metadata
license: apache-2.0
language:
- de
library_name: mlx
pipeline_tag: automatic-speech-recognition
model-index:
- name: >-
mlx version of whisper-large-v3-turbo-german by Florian Zimmermeister
@primeLine
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: German ASR Data-Mix
type: flozi00/asr-german-mixed
metrics:
- type: wer
value: 2.628 %
name: Test WER
datasets:
- flozi00/asr-german-mixed
- flozi00/asr-german-mixed-evals
base_model:
- primeline/whisper-large-v3-german
whisper-large-v3-turbo-german-f16-q4
This model was converted to MLX format from primeline/whisper-large-v3-turbo-german and is quantized to 4bit, float16.
made with a custom script for converting safetensor whisper models.
there is also an unquantized float16 version
Use with MLX
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/whisper/
pip install -r requirements.txt
import mlx_whisper
result = mlx_whisper.transcribe("test.mp3", path_or_hf_repo="mlx-community/whisper-large-v3-turbo-german-f16")
print(result)
whisper-large-v3-turbo-german-f16-q4
This model was converted to MLX format.
Use with MLX
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/whisper/
pip install -r requirements.txt
# Example usage
import mlx_whisper
result = mlx_whisper.transcribe("test.mp3", path_or_hf_repo="whisper-large-v3-turbo-german-f16-q4")
print(result)