File size: 1,683 Bytes
e4f9e82 124e7ec e4f9e82 124e7ec e4f9e82 124e7ec e4f9e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: apache-2.0
language:
- de
library_name: mlx
pipeline_tag: automatic-speech-recognition
model-index:
- name: mlx version of whisper-large-v3-turbo-german by Florian Zimmermeister @primeLine
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: German ASR Data-Mix
type: flozi00/asr-german-mixed
metrics:
- type: wer
value: 2.628 %
name: Test WER
datasets:
- flozi00/asr-german-mixed
- flozi00/asr-german-mixed-evals
base_model:
- primeline/whisper-large-v3-german
---
# whisper-large-v3-turbo-german-f16-q4
This model was converted to MLX format from primeline/whisper-large-v3-turbo-german and is quantized to 4bit, float16.
made with a [custom script for converting safetensor whisper models](https://github.com/CrispStrobe/mlx-examples/blob/main/whisper/convert_safetensors.py).
there is also an [unquantized float16](https://huggingface.co/mlx-community/whisper-large-v3-turbo-german-f16) version
## Use with MLX
```bash
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/whisper/
pip install -r requirements.txt
```
```python
import mlx_whisper
result = mlx_whisper.transcribe("test.mp3", path_or_hf_repo="mlx-community/whisper-large-v3-turbo-german-f16")
print(result)
```
# whisper-large-v3-turbo-german-f16-q4
This model was converted to MLX format.
## Use with MLX
```bash
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/whisper/
pip install -r requirements.txt
# Example usage
import mlx_whisper
result = mlx_whisper.transcribe("test.mp3", path_or_hf_repo="whisper-large-v3-turbo-german-f16-q4")
print(result)
```
|