File size: 71,469 Bytes
eb90369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
"""
-----------------------------------------------------------------------
This module implements gamma- and zeta-related functions:

* Bernoulli numbers
* Factorials
* The gamma function
* Polygamma functions
* Harmonic numbers
* The Riemann zeta function
* Constants related to these functions

-----------------------------------------------------------------------
"""

import math
import sys

from .backend import xrange
from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_THREE, gmpy

from .libintmath import list_primes, ifac, ifac2, moebius

from .libmpf import (\
    round_floor, round_ceiling, round_down, round_up,
    round_nearest, round_fast,
    lshift, sqrt_fixed, isqrt_fast,
    fzero, fone, fnone, fhalf, ftwo, finf, fninf, fnan,
    from_int, to_int, to_fixed, from_man_exp, from_rational,
    mpf_pos, mpf_neg, mpf_abs, mpf_add, mpf_sub,
    mpf_mul, mpf_mul_int, mpf_div, mpf_sqrt, mpf_pow_int,
    mpf_rdiv_int,
    mpf_perturb, mpf_le, mpf_lt, mpf_gt, mpf_shift,
    negative_rnd, reciprocal_rnd,
    bitcount, to_float, mpf_floor, mpf_sign, ComplexResult
)

from .libelefun import (\
    constant_memo,
    def_mpf_constant,
    mpf_pi, pi_fixed, ln2_fixed, log_int_fixed, mpf_ln2,
    mpf_exp, mpf_log, mpf_pow, mpf_cosh,
    mpf_cos_sin, mpf_cosh_sinh, mpf_cos_sin_pi, mpf_cos_pi, mpf_sin_pi,
    ln_sqrt2pi_fixed, mpf_ln_sqrt2pi, sqrtpi_fixed, mpf_sqrtpi,
    cos_sin_fixed, exp_fixed
)

from .libmpc import (\
    mpc_zero, mpc_one, mpc_half, mpc_two,
    mpc_abs, mpc_shift, mpc_pos, mpc_neg,
    mpc_add, mpc_sub, mpc_mul, mpc_div,
    mpc_add_mpf, mpc_mul_mpf, mpc_div_mpf, mpc_mpf_div,
    mpc_mul_int, mpc_pow_int,
    mpc_log, mpc_exp, mpc_pow,
    mpc_cos_pi, mpc_sin_pi,
    mpc_reciprocal, mpc_square,
    mpc_sub_mpf
)



# Catalan's constant is computed using Lupas's rapidly convergent series
# (listed on http://mathworld.wolfram.com/CatalansConstant.html)
#            oo
#            ___       n-1  8n     2                   3    2
#        1  \      (-1)    2   (40n  - 24n + 3) [(2n)!] (n!)
#  K =  ---  )     -----------------------------------------
#       64  /___               3               2
#                             n  (2n-1) [(4n)!]
#           n = 1

@constant_memo
def catalan_fixed(prec):
    prec = prec + 20
    a = one = MPZ_ONE << prec
    s, t, n = 0, 1, 1
    while t:
        a *= 32 * n**3 * (2*n-1)
        a //= (3-16*n+16*n**2)**2
        t = a * (-1)**(n-1) * (40*n**2-24*n+3) // (n**3 * (2*n-1))
        s += t
        n += 1
    return s >> (20 + 6)

# Khinchin's constant is relatively difficult to compute. Here
# we use the rational zeta series

#                    oo                2*n-1
#                   ___                ___
#                   \   ` zeta(2*n)-1  \   ` (-1)^(k+1)
#  log(K)*log(2) =   )    ------------  )    ----------
#                   /___.      n       /___.      k
#                   n = 1              k = 1

# which adds half a digit per term. The essential trick for achieving
# reasonable efficiency is to recycle both the values of the zeta
# function (essentially Bernoulli numbers) and the partial terms of
# the inner sum.

# An alternative might be to use K = 2*exp[1/log(2) X] where

#      / 1     1       [ pi*x*(1-x^2) ]
#  X = |    ------ log [ ------------ ].
#      / 0  x(1+x)     [  sin(pi*x)   ]

# and integrate numerically. In practice, this seems to be slightly
# slower than the zeta series at high precision.

@constant_memo
def khinchin_fixed(prec):
    wp = int(prec + prec**0.5 + 15)
    s = MPZ_ZERO
    fac = from_int(4)
    t = ONE = MPZ_ONE << wp
    pi = mpf_pi(wp)
    pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2)
    n = 1
    while 1:
        zeta2n = mpf_abs(mpf_bernoulli(2*n, wp))
        zeta2n = mpf_mul(zeta2n, pipow, wp)
        zeta2n = mpf_div(zeta2n, fac, wp)
        zeta2n = to_fixed(zeta2n, wp)
        term = (((zeta2n - ONE) * t) // n) >> wp
        if term < 100:
            break
        #if not n % 10:
        #    print n, math.log(int(abs(term)))
        s += term
        t += ONE//(2*n+1) - ONE//(2*n)
        n += 1
        fac = mpf_mul_int(fac, (2*n)*(2*n-1), wp)
        pipow = mpf_mul(pipow, twopi2, wp)
    s = (s << wp) // ln2_fixed(wp)
    K = mpf_exp(from_man_exp(s, -wp), wp)
    K = to_fixed(K, prec)
    return K


# Glaisher's constant is defined as A = exp(1/2 - zeta'(-1)).
# One way to compute it would be to perform direct numerical
# differentiation, but computing arbitrary Riemann zeta function
# values at high precision is expensive. We instead use the formula

#     A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12)

# and compute zeta'(2) from the series representation

#              oo
#              ___
#             \     log k
#  -zeta'(2) = )    -----
#             /___     2
#                    k
#            k = 2

# This series converges exceptionally slowly, but can be accelerated
# using Euler-Maclaurin formula. The important insight is that the
# E-M integral can be done in closed form and that the high order
# are given by

#    n  /       \
#   d   | log x |   a + b log x
#   --- | ----- | = -----------
#     n |   2   |      2 + n
#   dx  \  x    /     x

# where a and b are integers given by a simple recurrence. Note
# that just one logarithm is needed. However, lots of integer
# logarithms are required for the initial summation.

# This algorithm could possibly be turned into a faster algorithm
# for general evaluation of zeta(s) or zeta'(s); this should be
# looked into.

@constant_memo
def glaisher_fixed(prec):
    wp = prec + 30
    # Number of direct terms to sum before applying the Euler-Maclaurin
    # formula to the tail. TODO: choose more intelligently
    N = int(0.33*prec + 5)
    ONE = MPZ_ONE << wp
    # Euler-Maclaurin, step 1: sum log(k)/k**2 for k from 2 to N-1
    s = MPZ_ZERO
    for k in range(2, N):
        #print k, N
        s += log_int_fixed(k, wp) // k**2
    logN = log_int_fixed(N, wp)
    #logN = to_fixed(mpf_log(from_int(N), wp+20), wp)
    # E-M step 2: integral of log(x)/x**2 from N to inf
    s += (ONE + logN) // N
    # E-M step 3: endpoint correction term f(N)/2
    s += logN // (N**2 * 2)
    # E-M step 4: the series of derivatives
    pN = N**3
    a = 1
    b = -2
    j = 3
    fac = from_int(2)
    k = 1
    while 1:
        # D(2*k-1) * B(2*k) / fac(2*k) [D(n) = nth derivative]
        D = ((a << wp) + b*logN) // pN
        D = from_man_exp(D, -wp)
        B = mpf_bernoulli(2*k, wp)
        term = mpf_mul(B, D, wp)
        term = mpf_div(term, fac, wp)
        term = to_fixed(term, wp)
        if abs(term) < 100:
            break
        #if not k % 10:
        #    print k, math.log(int(abs(term)), 10)
        s -= term
        # Advance derivative twice
        a, b, pN, j = b-a*j, -j*b, pN*N, j+1
        a, b, pN, j = b-a*j, -j*b, pN*N, j+1
        k += 1
        fac = mpf_mul_int(fac, (2*k)*(2*k-1), wp)
    # A = exp((6*s/pi**2 + log(2*pi) + euler)/12)
    pi = pi_fixed(wp)
    s *= 6
    s = (s << wp) // (pi**2 >> wp)
    s += euler_fixed(wp)
    s += to_fixed(mpf_log(from_man_exp(2*pi, -wp), wp), wp)
    s //= 12
    A = mpf_exp(from_man_exp(s, -wp), wp)
    return to_fixed(A, prec)

# Apery's constant can be computed using the very rapidly convergent
# series
#              oo
#              ___              2                      10
#             \         n  205 n  + 250 n + 77     (n!)
#  zeta(3) =   )    (-1)   -------------------  ----------
#             /___               64                      5
#             n = 0                             ((2n+1)!)

@constant_memo
def apery_fixed(prec):
    prec += 20
    d = MPZ_ONE << prec
    term = MPZ(77) << prec
    n = 1
    s = MPZ_ZERO
    while term:
        s += term
        d *= (n**10)
        d //= (((2*n+1)**5) * (2*n)**5)
        term = (-1)**n * (205*(n**2) + 250*n + 77) * d
        n += 1
    return s >> (20 + 6)

"""
Euler's constant (gamma) is computed using the Brent-McMillan formula,
gamma ~= I(n)/J(n) - log(n), where

   I(n) = sum_{k=0,1,2,...} (n**k / k!)**2 * H(k)
   J(n) = sum_{k=0,1,2,...} (n**k / k!)**2
   H(k) = 1 + 1/2 + 1/3 + ... + 1/k

The error is bounded by O(exp(-4n)). Choosing n to be a power
of two, 2**p, the logarithm becomes particularly easy to calculate.[1]

We use the formulation of Algorithm 3.9 in [2] to make the summation
more efficient.

Reference:
[1] Xavier Gourdon & Pascal Sebah, The Euler constant: gamma
http://numbers.computation.free.fr/Constants/Gamma/gamma.pdf

[2] [BorweinBailey]_
"""

@constant_memo
def euler_fixed(prec):
    extra = 30
    prec += extra
    # choose p such that exp(-4*(2**p)) < 2**-n
    p = int(math.log((prec/4) * math.log(2), 2)) + 1
    n = 2**p
    A = U = -p*ln2_fixed(prec)
    B = V = MPZ_ONE << prec
    k = 1
    while 1:
        B = B*n**2//k**2
        A = (A*n**2//k + B)//k
        U += A
        V += B
        if max(abs(A), abs(B)) < 100:
            break
        k += 1
    return (U<<(prec-extra))//V

# Use zeta accelerated formulas for the Mertens and twin
# prime constants; see
# http://mathworld.wolfram.com/MertensConstant.html
# http://mathworld.wolfram.com/TwinPrimesConstant.html

@constant_memo
def mertens_fixed(prec):
    wp = prec + 20
    m = 2
    s = mpf_euler(wp)
    while 1:
        t = mpf_zeta_int(m, wp)
        if t == fone:
            break
        t = mpf_log(t, wp)
        t = mpf_mul_int(t, moebius(m), wp)
        t = mpf_div(t, from_int(m), wp)
        s = mpf_add(s, t)
        m += 1
    return to_fixed(s, prec)

@constant_memo
def twinprime_fixed(prec):
    def I(n):
        return sum(moebius(d)<<(n//d) for d in xrange(1,n+1) if not n%d)//n
    wp = 2*prec + 30
    res = fone
    primes = [from_rational(1,p,wp) for p in [2,3,5,7]]
    ppowers = [mpf_mul(p,p,wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec+10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3*15*35), wp)
    res = mpf_div(res, from_int(4*16*36), wp)
    return to_fixed(res, prec)


mpf_euler = def_mpf_constant(euler_fixed)
mpf_apery = def_mpf_constant(apery_fixed)
mpf_khinchin = def_mpf_constant(khinchin_fixed)
mpf_glaisher = def_mpf_constant(glaisher_fixed)
mpf_catalan = def_mpf_constant(catalan_fixed)
mpf_mertens = def_mpf_constant(mertens_fixed)
mpf_twinprime = def_mpf_constant(twinprime_fixed)


#-----------------------------------------------------------------------#
#                                                                       #
#                          Bernoulli numbers                            #
#                                                                       #
#-----------------------------------------------------------------------#

MAX_BERNOULLI_CACHE = 3000


r"""
Small Bernoulli numbers and factorials are used in numerous summations,
so it is critical for speed that sequential computation is fast and that
values are cached up to a fairly high threshold.

On the other hand, we also want to support fast computation of isolated
large numbers. Currently, no such acceleration is provided for integer
factorials (though it is for large floating-point factorials, which are
computed via gamma if the precision is low enough).

For sequential computation of Bernoulli numbers, we use Ramanujan's formula

                           / n + 3 \
  B   =  (A(n) - S(n))  /  |       |
   n                       \   n   /

where A(n) = (n+3)/3 when n = 0 or 2 (mod 6), A(n) = -(n+3)/6
when n = 4 (mod 6), and

         [n/6]
          ___
         \      /  n + 3  \
  S(n) =  )     |         | * B
         /___   \ n - 6*k /    n-6*k
         k = 1

For isolated large Bernoulli numbers, we use the Riemann zeta function
to calculate a numerical value for B_n. The von Staudt-Clausen theorem
can then be used to optionally find the exact value of the
numerator and denominator.
"""

bernoulli_cache = {}
f3 = from_int(3)
f6 = from_int(6)

def bernoulli_size(n):
    """Accurately estimate the size of B_n (even n > 2 only)"""
    lgn = math.log(n,2)
    return int(2.326 + 0.5*lgn + n*(lgn - 4.094))

BERNOULLI_PREC_CUTOFF = bernoulli_size(MAX_BERNOULLI_CACHE)

def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n)*1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0:fone}
        m, bin, bin1 = state = [2, MPZ(10), MPZ_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm)  - wp
        if m < 6:
            a = MPZ_ZERO
        else:
            a = bin1
        for j in xrange(1, m//6+1):
            usign, uman, uexp, ubc = u = numbers[m-6*j]
            if usign:
                uman = -uman
            s += lshift(a*uman, uexp-sexp)
            # Update inner binomial coefficient
            j6 = 6*j
            a *= ((m-5-j6)*(m-4-j6)*(m-3-j6)*(m-2-j6)*(m-1-j6)*(m-j6))
            a //= ((4+j6)*(5+j6)*(6+j6)*(7+j6)*(8+j6)*(9+j6))
        if case == 0: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m-3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m+2)*(m+3)) // (m*(m-1))
        if m > 6:
            bin1 = bin1 * ((2+m)*(3+m)) // ((m-7)*(m-6))
        state[:] = [m, bin, bin1]
    return numbers[n]

def mpf_bernoulli_huge(n, prec, rnd=None):
    wp = prec + 10
    piprec = wp + int(math.log(n,2))
    v = mpf_gamma_int(n+1, wp)
    v = mpf_mul(v, mpf_zeta_int(n, wp), wp)
    v = mpf_mul(v, mpf_pow_int(mpf_pi(piprec), -n, wp))
    v = mpf_shift(v, 1-n)
    if not n & 3:
        v = mpf_neg(v)
    return mpf_pos(v, prec, rnd or round_fast)

def bernfrac(n):
    r"""
    Returns a tuple of integers `(p, q)` such that `p/q = B_n` exactly,
    where `B_n` denotes the `n`-th Bernoulli number. The fraction is
    always reduced to lowest terms. Note that for `n > 1` and `n` odd,
    `B_n = 0`, and `(0, 1)` is returned.

    **Examples**

    The first few Bernoulli numbers are exactly::

        >>> from mpmath import *
        >>> for n in range(15):
        ...     p, q = bernfrac(n)
        ...     print("%s %s/%s" % (n, p, q))
        ...
        0 1/1
        1 -1/2
        2 1/6
        3 0/1
        4 -1/30
        5 0/1
        6 1/42
        7 0/1
        8 -1/30
        9 0/1
        10 5/66
        11 0/1
        12 -691/2730
        13 0/1
        14 7/6

    This function works for arbitrarily large `n`::

        >>> p, q = bernfrac(10**4)
        >>> print(q)
        2338224387510
        >>> print(len(str(p)))
        27692
        >>> mp.dps = 15
        >>> print(mpf(p) / q)
        -9.04942396360948e+27677
        >>> print(bernoulli(10**4))
        -9.04942396360948e+27677

    .. note ::

        :func:`~mpmath.bernoulli` computes a floating-point approximation
        directly, without computing the exact fraction first.
        This is much faster for large `n`.

    **Algorithm**

    :func:`~mpmath.bernfrac` works by computing the value of `B_n` numerically
    and then using the von Staudt-Clausen theorem [1] to reconstruct
    the exact fraction. For large `n`, this is significantly faster than
    computing `B_1, B_2, \ldots, B_2` recursively with exact arithmetic.
    The implementation has been tested for `n = 10^m` up to `m = 6`.

    In practice, :func:`~mpmath.bernfrac` appears to be about three times
    slower than the specialized program calcbn.exe [2]

    **References**

    1. MathWorld, von Staudt-Clausen Theorem:
       http://mathworld.wolfram.com/vonStaudt-ClausenTheorem.html

    2. The Bernoulli Number Page:
       http://www.bernoulli.org/

    """
    n = int(n)
    if n < 3:
        return [(1, 1), (-1, 2), (1, 6)][n]
    if n & 1:
        return (0, 1)
    q = 1
    for k in list_primes(n+1):
        if not (n % (k-1)):
            q *= k
    prec = bernoulli_size(n) + int(math.log(q,2)) + 20
    b = mpf_bernoulli(n, prec)
    p = mpf_mul(b, from_int(q))
    pint = to_int(p, round_nearest)
    return (pint, q)


#-----------------------------------------------------------------------#
#                                                                       #
#                         Polygamma functions                           #
#                                                                       #
#-----------------------------------------------------------------------#

r"""
For all polygamma (psi) functions, we use the Euler-Maclaurin summation
formula. It looks slightly different in the m = 0 and m > 0 cases.

For m = 0, we have
                                 oo
                                ___   B
       (0)                1    \       2 k    -2 k
    psi   (z)  ~ log z + --- -  )    ------  z
                         2 z   /___  (2 k)!
                               k = 1

Experiment shows that the minimum term of the asymptotic series
reaches 2^(-p) when Re(z) > 0.11*p. So we simply use the recurrence
for psi (equivalent, in fact, to summing to the first few terms
directly before applying E-M) to obtain z large enough.

Since, very crudely, log z ~= 1 for Re(z) > 1, we can use
fixed-point arithmetic  (if z is extremely large, log(z) itself
is a sufficient approximation, so we can stop there already).

For Re(z) << 0, we could use recurrence, but this is of course
inefficient for large negative z, so there we use the
reflection formula instead.

For m > 0, we have

                  N - 1
                   ___
  ~~~(m)       [  \          1    ]         1            1
  psi   (z)  ~ [   )     -------- ] +  ---------- +  -------- +
               [  /___        m+1 ]           m+1           m
                  k = 1  (z+k)    ]    2 (z+N)       m (z+N)

      oo
     ___    B
    \        2 k   (m+1) (m+2) ... (m+2k-1)
  +  )     ------  ------------------------
    /___   (2 k)!            m + 2 k
    k = 1               (z+N)

where ~~~ denotes the function rescaled by 1/((-1)^(m+1) m!).

Here again N is chosen to make z+N large enough for the minimum
term in the last series to become smaller than eps.

TODO: the current estimation of N for m > 0 is *very suboptimal*.

TODO: implement the reflection formula for m > 0, Re(z) << 0.
It is generally a combination of multiple cotangents. Need to
figure out a reasonably simple way to generate these formulas
on the fly.

TODO: maybe use exact algorithms to compute psi for integral
and certain rational arguments, as this can be much more
efficient. (On the other hand, the availability of these
special values provides a convenient way to test the general
algorithm.)
"""

# Harmonic numbers are just shifted digamma functions
# We should calculate these exactly when x is an integer
# and when doing so is faster.

def mpf_harmonic(x, prec, rnd):
    if x in (fzero, fnan, finf):
        return x
    a = mpf_psi0(mpf_add(fone, x, prec+5), prec)
    return mpf_add(a, mpf_euler(prec+5, rnd), prec, rnd)

def mpc_harmonic(z, prec, rnd):
    if z[1] == fzero:
        return (mpf_harmonic(z[0], prec, rnd), fzero)
    a = mpc_psi0(mpc_add_mpf(z, fone, prec+5), prec)
    return mpc_add_mpf(a, mpf_euler(prec+5, rnd), prec, rnd)

def mpf_psi0(x, prec, rnd=round_fast):
    """
    Computation of the digamma function (psi function of order 0)
    of a real argument.
    """
    sign, man, exp, bc = x
    wp = prec + 10
    if not man:
        if x == finf: return x
        if x == fninf or x == fnan: return fnan
    if x == fzero or (exp >= 0 and sign):
        raise ValueError("polygamma pole")
    # Near 0 -- fixed-point arithmetic becomes bad
    if exp+bc < -5:
        v = mpf_psi0(mpf_add(x, fone, prec, rnd), prec, rnd)
        return mpf_sub(v, mpf_div(fone, x, wp, rnd), prec, rnd)
    # Reflection formula
    if sign and exp+bc > 3:
        c, s = mpf_cos_sin_pi(x, wp)
        q = mpf_mul(mpf_div(c, s, wp), mpf_pi(wp), wp)
        p = mpf_psi0(mpf_sub(fone, x, wp), wp)
        return mpf_sub(p, q, prec, rnd)
    # The logarithmic term is accurate enough
    if (not sign) and bc + exp > wp:
        return mpf_log(mpf_sub(x, fone, wp), prec, rnd)
    # Initial recurrence to obtain a large enough x
    m = to_int(x)
    n = int(0.11*wp) + 2
    s = MPZ_ZERO
    x = to_fixed(x, wp)
    one = MPZ_ONE << wp
    if m < n:
        for k in xrange(m, n):
            s -= (one << wp) // x
            x += one
    x -= one
    # Logarithmic term
    s += to_fixed(mpf_log(from_man_exp(x, -wp, wp), wp), wp)
    # Endpoint term in Euler-Maclaurin expansion
    s += (one << wp) // (2*x)
    # Euler-Maclaurin remainder sum
    x2 = (x*x) >> wp
    t = one
    prev = 0
    k = 1
    while 1:
        t = (t*x2) >> wp
        bsign, bman, bexp, bbc = mpf_bernoulli(2*k, wp)
        offset = (bexp + 2*wp)
        if offset >= 0: term = (bman << offset) // (t*(2*k))
        else:           term = (bman >> (-offset)) // (t*(2*k))
        if k & 1: s -= term
        else:     s += term
        if k > 2 and term >= prev:
            break
        prev = term
        k += 1
    return from_man_exp(s, -wp, wp, rnd)

def mpc_psi0(z, prec, rnd=round_fast):
    """
    Computation of the digamma function (psi function of order 0)
    of a complex argument.
    """
    re, im = z
    # Fall back to the real case
    if im == fzero:
        return (mpf_psi0(re, prec, rnd), fzero)
    wp = prec + 20
    sign, man, exp, bc = re
    # Reflection formula
    if sign and exp+bc > 3:
        c = mpc_cos_pi(z, wp)
        s = mpc_sin_pi(z, wp)
        q = mpc_mul_mpf(mpc_div(c, s, wp), mpf_pi(wp), wp)
        p = mpc_psi0(mpc_sub(mpc_one, z, wp), wp)
        return mpc_sub(p, q, prec, rnd)
    # Just the logarithmic term
    if (not sign) and bc + exp > wp:
        return mpc_log(mpc_sub(z, mpc_one, wp), prec, rnd)
    # Initial recurrence to obtain a large enough z
    w = to_int(re)
    n = int(0.11*wp) + 2
    s = mpc_zero
    if w < n:
        for k in xrange(w, n):
            s = mpc_sub(s, mpc_reciprocal(z, wp), wp)
            z = mpc_add_mpf(z, fone, wp)
    z = mpc_sub(z, mpc_one, wp)
    # Logarithmic and endpoint term
    s = mpc_add(s, mpc_log(z, wp), wp)
    s = mpc_add(s, mpc_div(mpc_half, z, wp), wp)
    # Euler-Maclaurin remainder sum
    z2 = mpc_square(z, wp)
    t = mpc_one
    prev = mpc_zero
    szprev = fzero
    k = 1
    eps = mpf_shift(fone, -wp+2)
    while 1:
        t = mpc_mul(t, z2, wp)
        bern = mpf_bernoulli(2*k, wp)
        term = mpc_mpf_div(bern, mpc_mul_int(t, 2*k, wp), wp)
        s = mpc_sub(s, term, wp)
        szterm = mpc_abs(term, 10)
        if k > 2 and (mpf_le(szterm, eps) or mpf_le(szprev, szterm)):
            break
        prev = term
        szprev = szterm
        k += 1
    return s

# Currently unoptimized
def mpf_psi(m, x, prec, rnd=round_fast):
    """
    Computation of the polygamma function of arbitrary integer order
    m >= 0, for a real argument x.
    """
    if m == 0:
        return mpf_psi0(x, prec, rnd=round_fast)
    return mpc_psi(m, (x, fzero), prec, rnd)[0]

def mpc_psi(m, z, prec, rnd=round_fast):
    """
    Computation of the polygamma function of arbitrary integer order
    m >= 0, for a complex argument z.
    """
    if m == 0:
        return mpc_psi0(z, prec, rnd)
    re, im = z
    wp = prec + 20
    sign, man, exp, bc = re
    if not im[1]:
        if im in (finf, fninf, fnan):
            return (fnan, fnan)
    if not man:
        if re == finf and im == fzero:
            return (fzero, fzero)
        if re == fnan:
            return (fnan, fnan)
    # Recurrence
    w = to_int(re)
    n = int(0.4*wp + 4*m)
    s = mpc_zero
    if w < n:
        for k in xrange(w, n):
            t = mpc_pow_int(z, -m-1, wp)
            s = mpc_add(s, t, wp)
            z = mpc_add_mpf(z, fone, wp)
    zm = mpc_pow_int(z, -m, wp)
    z2 = mpc_pow_int(z, -2, wp)
    # 1/m*(z+N)^m
    integral_term = mpc_div_mpf(zm, from_int(m), wp)
    s = mpc_add(s, integral_term, wp)
    # 1/2*(z+N)^(-(m+1))
    s = mpc_add(s, mpc_mul_mpf(mpc_div(zm, z, wp), fhalf, wp), wp)
    a = m + 1
    b = 2
    k = 1
    # Important: we want to sum up to the *relative* error,
    # not the absolute error, because psi^(m)(z) might be tiny
    magn = mpc_abs(s, 10)
    magn = magn[2]+magn[3]
    eps = mpf_shift(fone, magn-wp+2)
    while 1:
        zm = mpc_mul(zm, z2, wp)
        bern = mpf_bernoulli(2*k, wp)
        scal = mpf_mul_int(bern, a, wp)
        scal = mpf_div(scal, from_int(b), wp)
        term = mpc_mul_mpf(zm, scal, wp)
        s = mpc_add(s, term, wp)
        szterm = mpc_abs(term, 10)
        if k > 2 and mpf_le(szterm, eps):
            break
        #print k, to_str(szterm, 10), to_str(eps, 10)
        a *= (m+2*k)*(m+2*k+1)
        b *= (2*k+1)*(2*k+2)
        k += 1
    # Scale and sign factor
    v = mpc_mul_mpf(s, mpf_gamma(from_int(m+1), wp), prec, rnd)
    if not (m & 1):
        v = mpf_neg(v[0]), mpf_neg(v[1])
    return v


#-----------------------------------------------------------------------#
#                                                                       #
#                         Riemann zeta function                         #
#                                                                       #
#-----------------------------------------------------------------------#

r"""
We use zeta(s) = eta(s) / (1 - 2**(1-s)) and Borwein's approximation

                  n-1
                  ___       k
             -1  \      (-1)  (d_k - d_n)
  eta(s) ~= ----  )     ------------------
             d_n /___              s
                 k = 0      (k + 1)
where
             k
             ___                i
            \     (n + i - 1)! 4
  d_k  =  n  )    ---------------.
            /___   (n - i)! (2i)!
            i = 0

If s = a + b*I, the absolute error for eta(s) is bounded by

    3 (1 + 2|b|)
    ------------ * exp(|b| pi/2)
               n
    (3+sqrt(8))

Disregarding the linear term, we have approximately,

  log(err) ~= log(exp(1.58*|b|)) - log(5.8**n)
  log(err) ~= 1.58*|b| - log(5.8)*n
  log(err) ~= 1.58*|b| - 1.76*n
  log2(err) ~= 2.28*|b| - 2.54*n

So for p bits, we should choose n > (p + 2.28*|b|) / 2.54.

References:
-----------

Peter Borwein, "An Efficient Algorithm for the Riemann Zeta Function"
http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P117.ps

http://en.wikipedia.org/wiki/Dirichlet_eta_function
"""

borwein_cache = {}

def borwein_coefficients(n):
    if n in borwein_cache:
        return borwein_cache[n]
    ds = [MPZ_ZERO] * (n+1)
    d = MPZ_ONE
    s = ds[0] = MPZ_ONE
    for i in range(1, n+1):
        d = d * 4 * (n+i-1) * (n-i+1)
        d //= ((2*i) * ((2*i)-1))
        s += d
        ds[i] = s
    borwein_cache[n] = ds
    return ds

ZETA_INT_CACHE_MAX_PREC = 1000
zeta_int_cache = {}

def mpf_zeta_int(s, prec, rnd=round_fast):
    """
    Optimized computation of zeta(s) for an integer s.
    """
    wp = prec + 20
    s = int(s)
    if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
        return mpf_pos(zeta_int_cache[s][1], prec, rnd)
    if s < 2:
        if s == 1:
            raise ValueError("zeta(1) pole")
        if not s:
            return mpf_neg(fhalf)
        return mpf_div(mpf_bernoulli(-s+1, wp), from_int(s-1), prec, rnd)
    # 2^-s term vanishes?
    if s >= wp:
        return mpf_perturb(fone, 0, prec, rnd)
    # 5^-s term vanishes?
    elif s >= wp*0.431:
        t = one = 1 << wp
        t += 1 << (wp - s)
        t += one // (MPZ_THREE ** s)
        t += 1 << max(0, wp - s*2)
        return from_man_exp(t, -wp, prec, rnd)
    else:
        # Fast enough to sum directly?
        # Even better, we use the Euler product (idea stolen from pari)
        m = (float(wp)/(s-1) + 1)
        if m < 30:
            needed_terms = int(2.0**m + 1)
            if needed_terms < int(wp/2.54 + 5) / 10:
                t = fone
                for k in list_primes(needed_terms):
                    #print k, needed_terms
                    powprec = int(wp - s*math.log(k,2))
                    if powprec < 2:
                        break
                    a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec), wp)
                    t = mpf_mul(t, a, wp)
                return mpf_div(fone, t, wp)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    s = MPZ(s)
    for k in xrange(n):
        t += (((-1)**k * (d[k] - d[n])) << wp) // (k+1)**s
    t = (t << wp) // (-d[n])
    t = (t << wp) // ((1 << wp) - (1 << (wp+1-s)))
    if (s in zeta_int_cache and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
        zeta_int_cache[s] = (wp, from_man_exp(t, -wp-wp))
    return from_man_exp(t, -wp-wp, prec, rnd)

def mpf_zeta(s, prec, rnd=round_fast, alt=0):
    sign, man, exp, bc = s
    if not man:
        if s == fzero:
            if alt:
                return fhalf
            else:
                return mpf_neg(fhalf)
        if s == finf:
            return fone
        return fnan
    wp = prec + 20
    # First term vanishes?
    if (not sign) and (exp + bc > (math.log(wp,2) + 2)):
        return mpf_perturb(fone, alt, prec, rnd)
    # Optimize for integer arguments
    elif exp >= 0:
        if alt:
            if s == fone:
                return mpf_ln2(prec, rnd)
            z = mpf_zeta_int(to_int(s), wp, negative_rnd[rnd])
            q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
            return mpf_mul(z, q, prec, rnd)
        else:
            return mpf_zeta_int(to_int(s), prec, rnd)
    # Negative: use the reflection formula
    # Borwein only proves the accuracy bound for x >= 1/2. However, based on
    # tests, the accuracy without reflection is quite good even some distance
    # to the left of 1/2. XXX: verify this.
    if sign:
        # XXX: could use the separate refl. formula for Dirichlet eta
        if alt:
            q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
            return mpf_mul(mpf_zeta(s, wp), q, prec, rnd)
        # XXX: -1 should be done exactly
        y = mpf_sub(fone, s, 10*wp)
        a = mpf_gamma(y, wp)
        b = mpf_zeta(y, wp)
        c = mpf_sin_pi(mpf_shift(s, -1), wp)
        wp2 = wp + max(0,exp+bc)
        pi = mpf_pi(wp+wp2)
        d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2)
        return mpf_mul(a,mpf_mul(b,mpf_mul(c,d,wp),wp),prec,rnd)

    # Near pole
    r = mpf_sub(fone, s, wp)
    asign, aman, aexp, abc = mpf_abs(r)
    pole_dist = -2*(aexp+abc)
    if pole_dist > wp:
        if alt:
            return mpf_ln2(prec, rnd)
        else:
            q = mpf_neg(mpf_div(fone, r, wp))
            return mpf_add(q, mpf_euler(wp), prec, rnd)
    else:
        wp += max(0, pole_dist)

    t = MPZ_ZERO
    #wp += 16 - (prec & 15)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    sf = to_fixed(s, wp)
    ln2 = ln2_fixed(wp)
    for k in xrange(n):
        u = (-sf*log_int_fixed(k+1, wp, ln2)) >> wp
        #esign, eman, eexp, ebc = mpf_exp(u, wp)
        #offset = eexp + wp
        #if offset >= 0:
        #    w = ((d[k] - d[n]) * eman) << offset
        #else:
        #    w = ((d[k] - d[n]) * eman) >> (-offset)
        eman = exp_fixed(u, wp, ln2)
        w = (d[k] - d[n]) * eman
        if k & 1:
            t -= w
        else:
            t += w
    t = t // (-d[n])
    t = from_man_exp(t, -wp, wp)
    if alt:
        return mpf_pos(t, prec, rnd)
    else:
        q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
        return mpf_div(t, q, prec, rnd)

def mpc_zeta(s, prec, rnd=round_fast, alt=0, force=False):
    re, im = s
    if im == fzero:
        return mpf_zeta(re, prec, rnd, alt), fzero

    # slow for large s
    if (not force) and mpf_gt(mpc_abs(s, 10), from_int(prec)):
        raise NotImplementedError

    wp = prec + 20

    # Near pole
    r = mpc_sub(mpc_one, s, wp)
    asign, aman, aexp, abc = mpc_abs(r, 10)
    pole_dist = -2*(aexp+abc)
    if pole_dist > wp:
        if alt:
            q = mpf_ln2(wp)
            y = mpf_mul(q, mpf_euler(wp), wp)
            g = mpf_shift(mpf_mul(q, q, wp), -1)
            g = mpf_sub(y, g)
            z = mpc_mul_mpf(r, mpf_neg(g), wp)
            z = mpc_add_mpf(z, q, wp)
            return mpc_pos(z, prec, rnd)
        else:
            q = mpc_neg(mpc_div(mpc_one, r, wp))
            q = mpc_add_mpf(q, mpf_euler(wp), wp)
            return mpc_pos(q, prec, rnd)
    else:
        wp += max(0, pole_dist)

    # Reflection formula. To be rigorous, we should reflect to the left of
    # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary
    # slowdown for interesting values of s
    if mpf_lt(re, fzero):
        # XXX: could use the separate refl. formula for Dirichlet eta
        if alt:
            q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp),
                wp), wp)
            return mpc_mul(mpc_zeta(s, wp), q, prec, rnd)
        # XXX: -1 should be done exactly
        y = mpc_sub(mpc_one, s, 10*wp)
        a = mpc_gamma(y, wp)
        b = mpc_zeta(y, wp)
        c = mpc_sin_pi(mpc_shift(s, -1), wp)
        rsign, rman, rexp, rbc = re
        isign, iman, iexp, ibc = im
        mag = max(rexp+rbc, iexp+ibc)
        wp2 = wp + max(0, mag)
        pi = mpf_pi(wp+wp2)
        pi2 = (mpf_shift(pi, 1), fzero)
        d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2)
        return mpc_mul(a,mpc_mul(b,mpc_mul(c,d,wp),wp),prec,rnd)
    n = int(wp/2.54 + 5)
    n += int(0.9*abs(to_int(im)))
    d = borwein_coefficients(n)
    ref = to_fixed(re, wp)
    imf = to_fixed(im, wp)
    tre = MPZ_ZERO
    tim = MPZ_ZERO
    one = MPZ_ONE << wp
    one_2wp = MPZ_ONE << (2*wp)
    critical_line = re == fhalf
    ln2 = ln2_fixed(wp)
    pi2 = pi_fixed(wp-1)
    wp2 = wp+wp
    for k in xrange(n):
        log = log_int_fixed(k+1, wp, ln2)
        # A square root is much cheaper than an exp
        if critical_line:
            w = one_2wp // isqrt_fast((k+1) << wp2)
        else:
            w = exp_fixed((-ref*log) >> wp, wp)
        if k & 1:
            w *= (d[n] - d[k])
        else:
            w *= (d[k] - d[n])
        wre, wim = cos_sin_fixed((-imf*log)>>wp, wp, pi2)
        tre += (w * wre) >> wp
        tim += (w * wim) >> wp
    tre //= (-d[n])
    tim //= (-d[n])
    tre = from_man_exp(tre, -wp, wp)
    tim = from_man_exp(tim, -wp, wp)
    if alt:
        return mpc_pos((tre, tim), prec, rnd)
    else:
        q = mpc_sub(mpc_one, mpc_pow(mpc_two, r, wp), wp)
        return mpc_div((tre, tim), q, prec, rnd)

def mpf_altzeta(s, prec, rnd=round_fast):
    return mpf_zeta(s, prec, rnd, 1)

def mpc_altzeta(s, prec, rnd=round_fast):
    return mpc_zeta(s, prec, rnd, 1)

# Not optimized currently
mpf_zetasum = None


def pow_fixed(x, n, wp):
    if n == 1:
        return x
    y = MPZ_ONE << wp
    while n:
        if n & 1:
            y = (y*x) >> wp
            n -= 1
        x = (x*x) >> wp
        n //= 2
    return y

# TODO: optimize / cleanup interface / unify with list_primes
sieve_cache = []
primes_cache = []
mult_cache = []

def primesieve(n):
    global sieve_cache, primes_cache, mult_cache
    if n < len(sieve_cache):
        sieve = sieve_cache#[:n+1]
        primes = primes_cache[:primes_cache.index(max(sieve))+1]
        mult = mult_cache#[:n+1]
        return sieve, primes, mult
    sieve = [0] * (n+1)
    mult = [0] * (n+1)
    primes = list_primes(n)
    for p in primes:
        #sieve[p::p] = p
        for k in xrange(p,n+1,p):
            sieve[k] = p
    for i, p in enumerate(sieve):
        if i >= 2:
            m = 1
            n = i // p
            while not n % p:
                n //= p
                m += 1
            mult[i] = m
    sieve_cache = sieve
    primes_cache = primes
    mult_cache = mult
    return sieve, primes, mult

def zetasum_sieved(critical_line, sre, sim, a, n, wp):
    if a < 1:
        raise ValueError("a cannot be less than 1")
    sieve, primes, mult = primesieve(a+n)
    basic_powers = {}
    one = MPZ_ONE << wp
    one_2wp = MPZ_ONE << (2*wp)
    wp2 = wp+wp
    ln2 = ln2_fixed(wp)
    pi2 = pi_fixed(wp-1)
    for p in primes:
        if p*2 > a+n:
            break
        log = log_int_fixed(p, wp, ln2)
        cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2)
        if critical_line:
            u = one_2wp // isqrt_fast(p<<wp2)
        else:
            u = exp_fixed((-sre*log)>>wp, wp)
        pre = (u*cos) >> wp
        pim = (u*sin) >> wp
        basic_powers[p] = [(pre, pim)]
        tre, tim = pre, pim
        for m in range(1,int(math.log(a+n,p)+0.01)+1):
            tre, tim = ((pre*tre-pim*tim)>>wp), ((pim*tre+pre*tim)>>wp)
            basic_powers[p].append((tre,tim))
    xre = MPZ_ZERO
    xim = MPZ_ZERO
    if a == 1:
        xre += one
    aa = max(a,2)
    for k in xrange(aa, a+n+1):
        p = sieve[k]
        if p in basic_powers:
            m = mult[k]
            tre, tim = basic_powers[p][m-1]
            while 1:
                k //= p**m
                if k == 1:
                    break
                p = sieve[k]
                m = mult[k]
                pre, pim = basic_powers[p][m-1]
                tre, tim = ((pre*tre-pim*tim)>>wp), ((pim*tre+pre*tim)>>wp)
        else:
            log = log_int_fixed(k, wp, ln2)
            cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2)
            if critical_line:
                u = one_2wp // isqrt_fast(k<<wp2)
            else:
                u = exp_fixed((-sre*log)>>wp, wp)
            tre = (u*cos) >> wp
            tim = (u*sin) >> wp
        xre += tre
        xim += tim
    return xre, xim

# Set to something large to disable
ZETASUM_SIEVE_CUTOFF = 10

def mpc_zetasum(s, a, n, derivatives, reflect, prec):
    """
    Fast version of mp._zetasum, assuming s = complex, a = integer.
    """

    wp = prec + 10
    derivatives = list(derivatives)
    have_derivatives = derivatives != [0]
    have_one_derivative = len(derivatives) == 1

    # parse s
    sre, sim = s
    critical_line = (sre == fhalf)
    sre = to_fixed(sre, wp)
    sim = to_fixed(sim, wp)

    if a > 0 and n > ZETASUM_SIEVE_CUTOFF and not have_derivatives \
            and not reflect and (n < 4e7 or sys.maxsize > 2**32):
        re, im = zetasum_sieved(critical_line, sre, sim, a, n, wp)
        xs = [(from_man_exp(re, -wp, prec, 'n'), from_man_exp(im, -wp, prec, 'n'))]
        return xs, []

    maxd = max(derivatives)
    if not have_one_derivative:
        derivatives = range(maxd+1)

    # x_d = 0, y_d = 0
    xre = [MPZ_ZERO for d in derivatives]
    xim = [MPZ_ZERO for d in derivatives]
    if reflect:
        yre = [MPZ_ZERO for d in derivatives]
        yim = [MPZ_ZERO for d in derivatives]
    else:
        yre = yim = []

    one = MPZ_ONE << wp
    one_2wp = MPZ_ONE << (2*wp)

    ln2 = ln2_fixed(wp)
    pi2 = pi_fixed(wp-1)
    wp2 = wp+wp

    for w in xrange(a, a+n+1):
        log = log_int_fixed(w, wp, ln2)
        cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2)
        if critical_line:
            u = one_2wp // isqrt_fast(w<<wp2)
        else:
            u = exp_fixed((-sre*log)>>wp, wp)
        xterm_re = (u * cos) >> wp
        xterm_im = (u * sin) >> wp
        if reflect:
            reciprocal = (one_2wp // (u*w))
            yterm_re = (reciprocal * cos) >> wp
            yterm_im = (reciprocal * sin) >> wp

        if have_derivatives:
            if have_one_derivative:
                log = pow_fixed(log, maxd, wp)
                xre[0] += (xterm_re * log) >> wp
                xim[0] += (xterm_im * log) >> wp
                if reflect:
                    yre[0] += (yterm_re * log) >> wp
                    yim[0] += (yterm_im * log) >> wp
            else:
                t = MPZ_ONE << wp
                for d in derivatives:
                    xre[d] += (xterm_re * t) >> wp
                    xim[d] += (xterm_im * t) >> wp
                    if reflect:
                        yre[d] += (yterm_re * t) >> wp
                        yim[d] += (yterm_im * t) >> wp
                    t = (t * log) >> wp
        else:
            xre[0] += xterm_re
            xim[0] += xterm_im
            if reflect:
                yre[0] += yterm_re
                yim[0] += yterm_im
    if have_derivatives:
        if have_one_derivative:
            if maxd % 2:
                xre[0] = -xre[0]
                xim[0] = -xim[0]
                if reflect:
                    yre[0] = -yre[0]
                    yim[0] = -yim[0]
        else:
            xre = [(-1)**d * xre[d] for d in derivatives]
            xim = [(-1)**d * xim[d] for d in derivatives]
            if reflect:
                yre = [(-1)**d * yre[d] for d in derivatives]
                yim = [(-1)**d * yim[d] for d in derivatives]
    xs = [(from_man_exp(xa, -wp, prec, 'n'), from_man_exp(xb, -wp, prec, 'n'))
        for (xa, xb) in zip(xre, xim)]
    ys = [(from_man_exp(ya, -wp, prec, 'n'), from_man_exp(yb, -wp, prec, 'n'))
        for (ya, yb) in zip(yre, yim)]
    return xs, ys


#-----------------------------------------------------------------------#
#                                                                       #
#              The gamma function  (NEW IMPLEMENTATION)                 #
#                                                                       #
#-----------------------------------------------------------------------#

# Higher means faster, but more precomputation time
MAX_GAMMA_TAYLOR_PREC = 5000
# Need to derive higher bounds for Taylor series to go higher
assert MAX_GAMMA_TAYLOR_PREC < 15000

# Use Stirling's series if abs(x) > beta*prec
# Important: must be large enough for convergence!
GAMMA_STIRLING_BETA = 0.2

SMALL_FACTORIAL_CACHE_SIZE = 150

gamma_taylor_cache = {}
gamma_stirling_cache = {}

small_factorial_cache = [from_int(ifac(n)) for \
    n in range(SMALL_FACTORIAL_CACHE_SIZE+1)]

def zeta_array(N, prec):
    """
    zeta(n) = A * pi**n / n! + B

    where A is a rational number (A = Bernoulli number
    for n even) and B is an infinite sum over powers of exp(2*pi).
    (B = 0 for n even).

    TODO: this is currently only used for gamma, but could
    be very useful elsewhere.
    """
    extra = 30
    wp = prec+extra
    zeta_values = [MPZ_ZERO] * (N+2)
    pi = pi_fixed(wp)
    # STEP 1:
    one = MPZ_ONE << wp
    zeta_values[0] = -one//2
    f_2pi = mpf_shift(mpf_pi(wp),1)
    exp_2pi_k = exp_2pi = mpf_exp(f_2pi, wp)
    # Compute exponential series
    # Store values of 1/(exp(2*pi*k)-1),
    # exp(2*pi*k)/(exp(2*pi*k)-1)**2, 1/(exp(2*pi*k)-1)**2
    # pi*k*exp(2*pi*k)/(exp(2*pi*k)-1)**2
    exps3 = []
    k = 1
    while 1:
        tp = wp - 9*k
        if tp < 1:
            break
        # 1/(exp(2*pi*k-1)
        q1 = mpf_div(fone, mpf_sub(exp_2pi_k, fone, tp), tp)
        # pi*k*exp(2*pi*k)/(exp(2*pi*k)-1)**2
        q2 = mpf_mul(exp_2pi_k, mpf_mul(q1,q1,tp), tp)
        q1 = to_fixed(q1, wp)
        q2 = to_fixed(q2, wp)
        q2 = (k * q2 * pi) >> wp
        exps3.append((q1, q2))
        # Multiply for next round
        exp_2pi_k = mpf_mul(exp_2pi_k, exp_2pi, wp)
        k += 1
    # Exponential sum
    for n in xrange(3, N+1, 2):
        s = MPZ_ZERO
        k = 1
        for e1, e2 in exps3:
            if n%4 == 3:
                t = e1 // k**n
            else:
                U = (n-1)//4
                t = (e1 + e2//U) // k**n
            if not t:
                break
            s += t
            k += 1
        zeta_values[n] = -2*s
    # Even zeta values
    B = [mpf_abs(mpf_bernoulli(k,wp)) for k in xrange(N+2)]
    pi_pow = fpi = mpf_pow_int(mpf_shift(mpf_pi(wp), 1), 2, wp)
    pi_pow = mpf_div(pi_pow, from_int(4), wp)
    for n in xrange(2,N+2,2):
        z = mpf_mul(B[n], pi_pow, wp)
        zeta_values[n] = to_fixed(z, wp)
        pi_pow = mpf_mul(pi_pow, fpi, wp)
        pi_pow = mpf_div(pi_pow, from_int((n+1)*(n+2)), wp)
    # Zeta sum
    reciprocal_pi = (one << wp) // pi
    for n in xrange(3, N+1, 4):
        U = (n-3)//4
        s = zeta_values[4*U+4]*(4*U+7)//4
        for k in xrange(1, U+1):
            s -= (zeta_values[4*k] * zeta_values[4*U+4-4*k]) >> wp
        zeta_values[n] += (2*s*reciprocal_pi) >> wp
    for n in xrange(5, N+1, 4):
        U = (n-1)//4
        s = zeta_values[4*U+2]*(2*U+1)
        for k in xrange(1, 2*U+1):
            s += ((-1)**k*2*k* zeta_values[2*k] * zeta_values[4*U+2-2*k])>>wp
        zeta_values[n] += ((s*reciprocal_pi)>>wp)//(2*U)
    return [x>>extra for x in zeta_values]

def gamma_taylor_coefficients(inprec):
    """
    Gives the Taylor coefficients of 1/gamma(1+x) as
    a list of fixed-point numbers. Enough coefficients are returned
    to ensure that the series converges to the given precision
    when x is in [0.5, 1.5].
    """
    # Reuse nearby cache values (small case)
    if inprec < 400:
        prec = inprec + (10-(inprec%10))
    elif inprec < 1000:
        prec = inprec + (30-(inprec%30))
    else:
        prec = inprec
    if prec in gamma_taylor_cache:
        return gamma_taylor_cache[prec], prec

    # Experimentally determined bounds
    if prec < 1000:
        N = int(prec**0.76 + 2)
    else:
        # Valid to at least 15000 bits
        N = int(prec**0.787 + 2)

    # Reuse higher precision values
    for cprec in gamma_taylor_cache:
        if cprec > prec:
            coeffs = [x>>(cprec-prec) for x in gamma_taylor_cache[cprec][-N:]]
            if inprec < 1000:
                gamma_taylor_cache[prec] = coeffs
            return coeffs, prec

    # Cache at a higher precision (large case)
    if prec > 1000:
        prec = int(prec * 1.2)

    wp = prec + 20
    A = [0] * N
    A[0] = MPZ_ZERO
    A[1] = MPZ_ONE << wp
    A[2] = euler_fixed(wp)
    # SLOW, reference implementation
    #zeta_values = [0,0]+[to_fixed(mpf_zeta_int(k,wp),wp) for k in xrange(2,N)]
    zeta_values = zeta_array(N, wp)
    for k in xrange(3, N):
        a = (-A[2]*A[k-1])>>wp
        for j in xrange(2,k):
            a += ((-1)**j * zeta_values[j] * A[k-j]) >> wp
        a //= (1-k)
        A[k] = a
    A = [a>>20 for a in A]
    A = A[::-1]
    A = A[:-1]
    gamma_taylor_cache[prec] = A
    #return A, prec
    return gamma_taylor_coefficients(inprec)

def gamma_fixed_taylor(xmpf, x, wp, prec, rnd, type):
    # Determine nearest multiple of N/2
    #n = int(x >> (wp-1))
    #steps = (n-1)>>1
    nearest_int = ((x >> (wp-1)) + MPZ_ONE) >> 1
    one = MPZ_ONE << wp
    coeffs, cwp = gamma_taylor_coefficients(wp)
    if nearest_int > 0:
        r = one
        for i in xrange(nearest_int-1):
            x -= one
            r = (r*x) >> wp
        x -= one
        p = MPZ_ZERO
        for c in coeffs:
            p = c + ((x*p)>>wp)
        p >>= (cwp-wp)
        if type == 0:
            return from_man_exp((r<<wp)//p, -wp, prec, rnd)
        if type == 2:
            return mpf_shift(from_rational(p, (r<<wp), prec, rnd), wp)
        if type == 3:
            return mpf_log(mpf_abs(from_man_exp((r<<wp)//p, -wp)), prec, rnd)
    else:
        r = one
        for i in xrange(-nearest_int):
            r = (r*x) >> wp
            x += one
        p = MPZ_ZERO
        for c in coeffs:
            p = c + ((x*p)>>wp)
        p >>= (cwp-wp)
        if wp - bitcount(abs(x)) > 10:
            # pass very close to 0, so do floating-point multiply
            g = mpf_add(xmpf, from_int(-nearest_int))  # exact
            r = from_man_exp(p*r,-wp-wp)
            r = mpf_mul(r, g, wp)
            if type == 0:
                return mpf_div(fone, r, prec, rnd)
            if type == 2:
                return mpf_pos(r, prec, rnd)
            if type == 3:
                return mpf_log(mpf_abs(mpf_div(fone, r, wp)), prec, rnd)
        else:
            r = from_man_exp(x*p*r,-3*wp)
            if type == 0: return mpf_div(fone, r, prec, rnd)
            if type == 2: return mpf_pos(r, prec, rnd)
            if type == 3: return mpf_neg(mpf_log(mpf_abs(r), prec, rnd))

def stirling_coefficient(n):
    if n in gamma_stirling_cache:
        return gamma_stirling_cache[n]
    p, q = bernfrac(n)
    q *= MPZ(n*(n-1))
    gamma_stirling_cache[n] = p, q, bitcount(abs(p)), bitcount(q)
    return gamma_stirling_cache[n]

def real_stirling_series(x, prec):
    """
    Sums the rational part of Stirling's expansion,

    log(sqrt(2*pi)) - z + 1/(12*z) - 1/(360*z^3) + ...

    """
    t = (MPZ_ONE<<(prec+prec)) // x   # t = 1/x
    u = (t*t)>>prec                  # u = 1/x**2
    s = ln_sqrt2pi_fixed(prec) - x
    # Add initial terms of Stirling's series
    s += t//12;            t = (t*u)>>prec
    s -= t//360;           t = (t*u)>>prec
    s += t//1260;          t = (t*u)>>prec
    s -= t//1680;          t = (t*u)>>prec
    if not t: return s
    s += t//1188;          t = (t*u)>>prec
    s -= 691*t//360360;    t = (t*u)>>prec
    s += t//156;           t = (t*u)>>prec
    if not t: return s
    s -= 3617*t//122400;   t = (t*u)>>prec
    s += 43867*t//244188;  t = (t*u)>>prec
    s -= 174611*t//125400;  t = (t*u)>>prec
    if not t: return s
    k = 22
    # From here on, the coefficients are growing, so we
    # have to keep t at a roughly constant size
    usize = bitcount(abs(u))
    tsize = bitcount(abs(t))
    texp = 0
    while 1:
        p, q, pb, qb = stirling_coefficient(k)
        term_mag = tsize + pb + texp
        shift = -texp
        m = pb - term_mag
        if m > 0 and shift < m:
            p >>= m
            shift -= m
        m = tsize - term_mag
        if m > 0 and shift < m:
            w = t >> m
            shift -= m
        else:
            w = t
        term = (t*p//q) >> shift
        if not term:
            break
        s += term
        t = (t*u) >> usize
        texp -= (prec - usize)
        k += 2
    return s

def complex_stirling_series(x, y, prec):
    # t = 1/z
    _m = (x*x + y*y) >> prec
    tre = (x << prec) // _m
    tim = (-y << prec) // _m
    # u = 1/z**2
    ure = (tre*tre - tim*tim) >> prec
    uim = tim*tre >> (prec-1)
    # s = log(sqrt(2*pi)) - z
    sre = ln_sqrt2pi_fixed(prec) - x
    sim = -y

    # Add initial terms of Stirling's series
    sre += tre//12; sim += tim//12;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    sre -= tre//360; sim -= tim//360;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    sre += tre//1260; sim += tim//1260;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    sre -= tre//1680; sim -= tim//1680;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    if abs(tre) + abs(tim) < 5: return sre, sim
    sre += tre//1188; sim += tim//1188;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    sre -= 691*tre//360360; sim -= 691*tim//360360;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    sre += tre//156; sim += tim//156;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    if abs(tre) + abs(tim) < 5: return sre, sim
    sre -= 3617*tre//122400; sim -= 3617*tim//122400;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    sre += 43867*tre//244188; sim += 43867*tim//244188;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    sre -= 174611*tre//125400; sim -= 174611*tim//125400;
    tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec)
    if abs(tre) + abs(tim) < 5: return sre, sim

    k = 22
    # From here on, the coefficients are growing, so we
    # have to keep t at a roughly constant size
    usize = bitcount(max(abs(ure), abs(uim)))
    tsize = bitcount(max(abs(tre), abs(tim)))
    texp = 0
    while 1:
        p, q, pb, qb = stirling_coefficient(k)
        term_mag = tsize + pb + texp
        shift = -texp
        m = pb - term_mag
        if m > 0 and shift < m:
            p >>= m
            shift -= m
        m = tsize - term_mag
        if m > 0 and shift < m:
            wre = tre >> m
            wim = tim >> m
            shift -= m
        else:
            wre = tre
            wim = tim
        termre = (tre*p//q) >> shift
        termim = (tim*p//q) >> shift
        if abs(termre) + abs(termim) < 5:
            break
        sre += termre
        sim += termim
        tre, tim = ((tre*ure - tim*uim)>>usize), \
            ((tre*uim + tim*ure)>>usize)
        texp -= (prec - usize)
        k += 2
    return sre, sim


def mpf_gamma(x, prec, rnd='d', type=0):
    """
    This function implements multipurpose evaluation of the gamma
    function, G(x), as well as the following versions of the same:

    type = 0 -- G(x)                    [standard gamma function]
    type = 1 -- G(x+1) = x*G(x+1) = x!  [factorial]
    type = 2 -- 1/G(x)                  [reciprocal gamma function]
    type = 3 -- log(|G(x)|)             [log-gamma function, real part]
    """

    # Specal values
    sign, man, exp, bc = x
    if not man:
        if x == fzero:
            if type == 1: return fone
            if type == 2: return fzero
            raise ValueError("gamma function pole")
        if x == finf:
            if type == 2: return fzero
            return finf
        return fnan

    # First of all, for log gamma, numbers can be well beyond the fixed-point
    # range, so we must take care of huge numbers before e.g. trying
    # to convert x to the nearest integer
    if type == 3:
        wp = prec+20
        if exp+bc > wp and not sign:
            return mpf_sub(mpf_mul(x, mpf_log(x, wp), wp), x, prec, rnd)

    # We strongly want to special-case small integers
    is_integer = exp >= 0
    if is_integer:
        # Poles
        if sign:
            if type == 2:
                return fzero
            raise ValueError("gamma function pole")
        # n = x
        n = man << exp
        if n < SMALL_FACTORIAL_CACHE_SIZE:
            if type == 0:
                return mpf_pos(small_factorial_cache[n-1], prec, rnd)
            if type == 1:
                return mpf_pos(small_factorial_cache[n], prec, rnd)
            if type == 2:
                return mpf_div(fone, small_factorial_cache[n-1], prec, rnd)
            if type == 3:
                return mpf_log(small_factorial_cache[n-1], prec, rnd)
    else:
        # floor(abs(x))
        n = int(man >> (-exp))

    # Estimate size and precision
    # Estimate log(gamma(|x|),2) as x*log(x,2)
    mag = exp + bc
    gamma_size = n*mag

    if type == 3:
        wp = prec + 20
    else:
        wp = prec + bitcount(gamma_size) + 20

    # Very close to 0, pole
    if mag < -wp:
        if type == 0:
            return mpf_sub(mpf_div(fone,x, wp),mpf_shift(fone,-wp),prec,rnd)
        if type == 1: return mpf_sub(fone, x, prec, rnd)
        if type == 2: return mpf_add(x, mpf_shift(fone,mag-wp), prec, rnd)
        if type == 3: return mpf_neg(mpf_log(mpf_abs(x), prec, rnd))

    # From now on, we assume having a gamma function
    if type == 1:
        return mpf_gamma(mpf_add(x, fone), prec, rnd, 0)

    # Special case integers (those not small enough to be caught above,
    # but still small enough for an exact factorial to be faster
    # than an approximate algorithm), and half-integers
    if exp >= -1:
        if is_integer:
            if gamma_size < 10*wp:
                if type == 0:
                    return from_int(ifac(n-1), prec, rnd)
                if type == 2:
                    return from_rational(MPZ_ONE, ifac(n-1), prec, rnd)
                if type == 3:
                    return mpf_log(from_int(ifac(n-1)), prec, rnd)
        # half-integer
        if n < 100 or gamma_size < 10*wp:
            if sign:
                w = sqrtpi_fixed(wp)
                if n % 2: f = ifac2(2*n+1)
                else:     f = -ifac2(2*n+1)
                if type == 0:
                    return mpf_shift(from_rational(w, f, prec, rnd), -wp+n+1)
                if type == 2:
                    return mpf_shift(from_rational(f, w, prec, rnd), wp-n-1)
                if type == 3:
                    return mpf_log(mpf_shift(from_rational(w, abs(f),
                        prec, rnd), -wp+n+1), prec, rnd)
            elif n == 0:
                if type == 0: return mpf_sqrtpi(prec, rnd)
                if type == 2: return mpf_div(fone, mpf_sqrtpi(wp), prec, rnd)
                if type == 3: return mpf_log(mpf_sqrtpi(wp), prec, rnd)
            else:
                w = sqrtpi_fixed(wp)
                w = from_man_exp(w * ifac2(2*n-1), -wp-n)
                if type == 0: return mpf_pos(w, prec, rnd)
                if type == 2: return mpf_div(fone, w, prec, rnd)
                if type == 3: return mpf_log(mpf_abs(w), prec, rnd)

    # Convert to fixed point
    offset = exp + wp
    if offset >= 0: absxman = man << offset
    else:           absxman = man >> (-offset)

    # For log gamma, provide accurate evaluation for x = 1+eps and 2+eps
    if type == 3 and not sign:
        one = MPZ_ONE << wp
        one_dist = abs(absxman-one)
        two_dist = abs(absxman-2*one)
        cancellation = (wp - bitcount(min(one_dist, two_dist)))
        if cancellation > 10:
            xsub1 = mpf_sub(fone, x)
            xsub2 = mpf_sub(ftwo, x)
            xsub1mag = xsub1[2]+xsub1[3]
            xsub2mag = xsub2[2]+xsub2[3]
            if xsub1mag < -wp:
                return mpf_mul(mpf_euler(wp), mpf_sub(fone, x), prec, rnd)
            if xsub2mag < -wp:
                return mpf_mul(mpf_sub(fone, mpf_euler(wp)),
                    mpf_sub(x, ftwo), prec, rnd)
            # Proceed but increase precision
            wp += max(-xsub1mag, -xsub2mag)
            offset = exp + wp
            if offset >= 0: absxman = man << offset
            else:           absxman = man >> (-offset)

    # Use Taylor series if appropriate
    n_for_stirling = int(GAMMA_STIRLING_BETA*wp)
    if n < max(100, n_for_stirling) and wp < MAX_GAMMA_TAYLOR_PREC:
        if sign:
            absxman = -absxman
        return gamma_fixed_taylor(x, absxman, wp, prec, rnd, type)

    # Use Stirling's series
    # First ensure that |x| is large enough for rapid convergence
    xorig = x

    # Argument reduction
    r = 0
    if n < n_for_stirling:
        r = one = MPZ_ONE << wp
        d = n_for_stirling - n
        for k in xrange(d):
            r = (r * absxman) >> wp
            absxman += one
        x = xabs = from_man_exp(absxman, -wp)
        if sign:
            x = mpf_neg(x)
    else:
        xabs = mpf_abs(x)

    # Asymptotic series
    y = real_stirling_series(absxman, wp)
    u = to_fixed(mpf_log(xabs, wp), wp)
    u = ((absxman - (MPZ_ONE<<(wp-1))) * u) >> wp
    y += u
    w = from_man_exp(y, -wp)

    # Compute final value
    if sign:
        # Reflection formula
        A = mpf_mul(mpf_sin_pi(xorig, wp), xorig, wp)
        B = mpf_neg(mpf_pi(wp))
        if type == 0 or type == 2:
            A = mpf_mul(A, mpf_exp(w, wp))
            if r:
                B = mpf_mul(B, from_man_exp(r, -wp), wp)
            if type == 0:
                return mpf_div(B, A, prec, rnd)
            if type == 2:
                return mpf_div(A, B, prec, rnd)
        if type == 3:
            if r:
                B = mpf_mul(B, from_man_exp(r, -wp), wp)
            A = mpf_add(mpf_log(mpf_abs(A), wp), w, wp)
            return mpf_sub(mpf_log(mpf_abs(B), wp), A, prec, rnd)
    else:
        if type == 0:
            if r:
                return mpf_div(mpf_exp(w, wp),
                    from_man_exp(r, -wp), prec, rnd)
            return mpf_exp(w, prec, rnd)
        if type == 2:
            if r:
                return mpf_div(from_man_exp(r, -wp),
                    mpf_exp(w, wp), prec, rnd)
            return mpf_exp(mpf_neg(w), prec, rnd)
        if type == 3:
            if r:
                return mpf_sub(w, mpf_log(from_man_exp(r,-wp), wp), prec, rnd)
            return mpf_pos(w, prec, rnd)


def mpc_gamma(z, prec, rnd='d', type=0):
    a, b = z
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b

    if b == fzero:
        # Imaginary part on negative half-axis for log-gamma function
        if type == 3 and asign:
            re = mpf_gamma(a, prec, rnd, 3)
            n = (-aman) >> (-aexp)
            im = mpf_mul_int(mpf_pi(prec+10), n, prec, rnd)
            return re, im
        return mpf_gamma(a, prec, rnd, type), fzero

    # Some kind of complex inf/nan
    if (not aman and aexp) or (not bman and bexp):
        return (fnan, fnan)

    # Initial working precision
    wp = prec + 20

    amag = aexp+abc
    bmag = bexp+bbc
    if aman:
        mag = max(amag, bmag)
    else:
        mag = bmag

    # Close to 0
    if mag < -8:
        if mag < -wp:
            # 1/gamma(z) = z + euler*z^2 + O(z^3)
            v = mpc_add(z, mpc_mul_mpf(mpc_mul(z,z,wp),mpf_euler(wp),wp), wp)
            if type == 0: return mpc_reciprocal(v, prec, rnd)
            if type == 1: return mpc_div(z, v, prec, rnd)
            if type == 2: return mpc_pos(v, prec, rnd)
            if type == 3: return mpc_log(mpc_reciprocal(v, prec), prec, rnd)
        elif type != 1:
            wp += (-mag)

    # Handle huge log-gamma values; must do this before converting to
    # a fixed-point value. TODO: determine a precise cutoff of validity
    # depending on amag and bmag
    if type == 3 and mag > wp and ((not asign) or (bmag >= amag)):
        return mpc_sub(mpc_mul(z, mpc_log(z, wp), wp), z, prec, rnd)

    # From now on, we assume having a gamma function
    if type == 1:
        return mpc_gamma((mpf_add(a, fone), b), prec, rnd, 0)

    an = abs(to_int(a))
    bn = abs(to_int(b))
    absn = max(an, bn)
    gamma_size = absn*mag
    if type == 3:
        pass
    else:
        wp += bitcount(gamma_size)

    # Reflect to the right half-plane. Note that Stirling's expansion
    # is valid in the left half-plane too, as long as we're not too close
    # to the real axis, but in order to use this argument reduction
    # in the negative direction must be implemented.
    #need_reflection = asign and ((bmag < 0) or (amag-bmag > 4))
    need_reflection = asign
    zorig = z
    if need_reflection:
        z = mpc_neg(z)
        asign, aman, aexp, abc = a = z[0]
        bsign, bman, bexp, bbc = b = z[1]

    # Imaginary part very small compared to real one?
    yfinal = 0
    balance_prec = 0
    if bmag < -10:
        # Check z ~= 1 and z ~= 2 for loggamma
        if type == 3:
            zsub1 = mpc_sub_mpf(z, fone)
            if zsub1[0] == fzero:
                cancel1 = -bmag
            else:
                cancel1 = -max(zsub1[0][2]+zsub1[0][3], bmag)
            if cancel1 > wp:
                pi = mpf_pi(wp)
                x = mpc_mul_mpf(zsub1, pi, wp)
                x = mpc_mul(x, x, wp)
                x = mpc_div_mpf(x, from_int(12), wp)
                y = mpc_mul_mpf(zsub1, mpf_neg(mpf_euler(wp)), wp)
                yfinal = mpc_add(x, y, wp)
                if not need_reflection:
                    return mpc_pos(yfinal, prec, rnd)
            elif cancel1 > 0:
                wp += cancel1
            zsub2 = mpc_sub_mpf(z, ftwo)
            if zsub2[0] == fzero:
                cancel2 = -bmag
            else:
                cancel2 = -max(zsub2[0][2]+zsub2[0][3], bmag)
            if cancel2 > wp:
                pi = mpf_pi(wp)
                t = mpf_sub(mpf_mul(pi, pi), from_int(6))
                x = mpc_mul_mpf(mpc_mul(zsub2, zsub2, wp), t, wp)
                x = mpc_div_mpf(x, from_int(12), wp)
                y = mpc_mul_mpf(zsub2, mpf_sub(fone, mpf_euler(wp)), wp)
                yfinal = mpc_add(x, y, wp)
                if not need_reflection:
                    return mpc_pos(yfinal, prec, rnd)
            elif cancel2 > 0:
                wp += cancel2
        if bmag < -wp:
            # Compute directly from the real gamma function.
            pp = 2*(wp+10)
            aabs = mpf_abs(a)
            eps = mpf_shift(fone, amag-wp)
            x1 = mpf_gamma(aabs, pp, type=type)
            x2 = mpf_gamma(mpf_add(aabs, eps), pp, type=type)
            xprime = mpf_div(mpf_sub(x2, x1, pp), eps, pp)
            y = mpf_mul(b, xprime, prec, rnd)
            yfinal = (x1, y)
            # Note: we still need to use the reflection formula for
            # near-poles, and the correct branch of the log-gamma function
            if not need_reflection:
                return mpc_pos(yfinal, prec, rnd)
        else:
            balance_prec += (-bmag)

    wp += balance_prec
    n_for_stirling = int(GAMMA_STIRLING_BETA*wp)
    need_reduction = absn < n_for_stirling

    afix = to_fixed(a, wp)
    bfix = to_fixed(b, wp)

    r = 0
    if not yfinal:
        zprered = z
        # Argument reduction
        if absn < n_for_stirling:
            absn = complex(an, bn)
            d = int((1 + n_for_stirling**2 - bn**2)**0.5 - an)
            rre = one = MPZ_ONE << wp
            rim = MPZ_ZERO
            for k in xrange(d):
                rre, rim = ((afix*rre-bfix*rim)>>wp), ((afix*rim + bfix*rre)>>wp)
                afix += one
            r = from_man_exp(rre, -wp), from_man_exp(rim, -wp)
            a = from_man_exp(afix, -wp)
            z = a, b

        yre, yim = complex_stirling_series(afix, bfix, wp)
        # (z-1/2)*log(z) + S
        lre, lim = mpc_log(z, wp)
        lre = to_fixed(lre, wp)
        lim = to_fixed(lim, wp)
        yre = ((lre*afix - lim*bfix)>>wp) - (lre>>1) + yre
        yim = ((lre*bfix + lim*afix)>>wp) - (lim>>1) + yim
        y = from_man_exp(yre, -wp), from_man_exp(yim, -wp)

        if r and type == 3:
            # If re(z) > 0 and abs(z) <= 4, the branches of loggamma(z)
            # and log(gamma(z)) coincide. Otherwise, use the zeroth order
            # Stirling expansion to compute the correct imaginary part.
            y = mpc_sub(y, mpc_log(r, wp), wp)
            zfa = to_float(zprered[0])
            zfb = to_float(zprered[1])
            zfabs = math.hypot(zfa,zfb)
            #if not (zfa > 0.0 and zfabs <= 4):
            yfb = to_float(y[1])
            u = math.atan2(zfb, zfa)
            if zfabs <= 0.5:
                gi = 0.577216*zfb - u
            else:
                gi = -zfb - 0.5*u + zfa*u + zfb*math.log(zfabs)
            n = int(math.floor((gi-yfb)/(2*math.pi)+0.5))
            y = (y[0], mpf_add(y[1], mpf_mul_int(mpf_pi(wp), 2*n, wp), wp))

    if need_reflection:
        if type == 0 or type == 2:
            A = mpc_mul(mpc_sin_pi(zorig, wp), zorig, wp)
            B = (mpf_neg(mpf_pi(wp)), fzero)
            if yfinal:
                if type == 2:
                    A = mpc_div(A, yfinal, wp)
                else:
                    A = mpc_mul(A, yfinal, wp)
            else:
                A = mpc_mul(A, mpc_exp(y, wp), wp)
            if r:
                B = mpc_mul(B, r, wp)
            if type == 0: return mpc_div(B, A, prec, rnd)
            if type == 2: return mpc_div(A, B, prec, rnd)

        # Reflection formula for the log-gamma function with correct branch
        # http://functions.wolfram.com/GammaBetaErf/LogGamma/16/01/01/0006/
        # LogGamma[z] == -LogGamma[-z] - Log[-z] +
        # Sign[Im[z]] Floor[Re[z]] Pi I + Log[Pi] -
        #      Log[Sin[Pi (z - Floor[Re[z]])]] -
        # Pi I (1 - Abs[Sign[Im[z]]]) Abs[Floor[Re[z]]]
        if type == 3:
            if yfinal:
                s1 = mpc_neg(yfinal)
            else:
                s1 = mpc_neg(y)
            # s -= log(-z)
            s1 = mpc_sub(s1, mpc_log(mpc_neg(zorig), wp), wp)
            # floor(re(z))
            rezfloor = mpf_floor(zorig[0])
            imzsign = mpf_sign(zorig[1])
            pi = mpf_pi(wp)
            t = mpf_mul(pi, rezfloor)
            t = mpf_mul_int(t, imzsign, wp)
            s1 = (s1[0], mpf_add(s1[1], t, wp))
            s1 = mpc_add_mpf(s1, mpf_log(pi, wp), wp)
            t = mpc_sin_pi(mpc_sub_mpf(zorig, rezfloor), wp)
            t = mpc_log(t, wp)
            s1 = mpc_sub(s1, t, wp)
            # Note: may actually be unused, because we fall back
            # to the mpf_ function for real arguments
            if not imzsign:
                t = mpf_mul(pi, mpf_floor(rezfloor), wp)
                s1 = (s1[0], mpf_sub(s1[1], t, wp))
            return mpc_pos(s1, prec, rnd)
    else:
        if type == 0:
            if r:
                return mpc_div(mpc_exp(y, wp), r, prec, rnd)
            return mpc_exp(y, prec, rnd)
        if type == 2:
            if r:
                return mpc_div(r, mpc_exp(y, wp), prec, rnd)
            return mpc_exp(mpc_neg(y), prec, rnd)
        if type == 3:
            return mpc_pos(y, prec, rnd)

def mpf_factorial(x, prec, rnd='d'):
    return mpf_gamma(x, prec, rnd, 1)

def mpc_factorial(x, prec, rnd='d'):
    return mpc_gamma(x, prec, rnd, 1)

def mpf_rgamma(x, prec, rnd='d'):
    return mpf_gamma(x, prec, rnd, 2)

def mpc_rgamma(x, prec, rnd='d'):
    return mpc_gamma(x, prec, rnd, 2)

def mpf_loggamma(x, prec, rnd='d'):
    sign, man, exp, bc = x
    if sign:
        raise ComplexResult
    return mpf_gamma(x, prec, rnd, 3)

def mpc_loggamma(z, prec, rnd='d'):
    a, b = z
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if b == fzero and asign:
        re = mpf_gamma(a, prec, rnd, 3)
        n = (-aman) >> (-aexp)
        im = mpf_mul_int(mpf_pi(prec+10), n, prec, rnd)
        return re, im
    return mpc_gamma(z, prec, rnd, 3)

def mpf_gamma_int(n, prec, rnd=round_fast):
    if n < SMALL_FACTORIAL_CACHE_SIZE:
        return mpf_pos(small_factorial_cache[n-1], prec, rnd)
    return mpf_gamma(from_int(n), prec, rnd)