File size: 11,331 Bytes
254a3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# coding=utf-8
# Copyright 2023-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains utilities used by both the sync and async inference clients."""
import base64
import io
import json
import logging
from contextlib import contextmanager
from dataclasses import dataclass
from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Any,
    AsyncIterable,
    BinaryIO,
    ContextManager,
    Dict,
    Generator,
    Iterable,
    List,
    Literal,
    Optional,
    Set,
    Union,
    overload,
)

from requests import HTTPError

from ..constants import ENDPOINT
from ..utils import (
    build_hf_headers,
    get_session,
    hf_raise_for_status,
    is_aiohttp_available,
    is_numpy_available,
    is_pillow_available,
)
from ._text_generation import TextGenerationStreamResponse, _parse_text_generation_error


if TYPE_CHECKING:
    from aiohttp import ClientResponse, ClientSession
    from PIL import Image

# TYPES
UrlT = str
PathT = Union[str, Path]
BinaryT = Union[bytes, BinaryIO]
ContentT = Union[BinaryT, PathT, UrlT]

# Use to set a Accept: image/png header
TASKS_EXPECTING_IMAGES = {"text-to-image", "image-to-image"}

logger = logging.getLogger(__name__)


# Add dataclass for ModelStatus. We use this dataclass in get_model_status function.
@dataclass
class ModelStatus:
    """
    This Dataclass represents the the model status in the Hugging Face Inference API.

    Args:
        loaded (`bool`):
            If the model is currently loaded into Hugging Face's InferenceAPI. Models
            are loaded on-demand, leading to the user's first request taking longer.
            If a model is loaded, you can be assured that it is in a healthy state.
        state (`str`):
            The current state of the model. This can be 'Loaded', 'Loadable', 'TooBig'.
            If a model's state is 'Loadable', it's not too big and has a supported
            backend. Loadable models are automatically loaded when the user first
            requests inference on the endpoint. This means it is transparent for the
            user to load a model, except that the first call takes longer to complete.
        compute_type (`str`):
            The type of compute resource the model is using or will use, such as 'gpu' or 'cpu'.
        framework (`str`):
            The name of the framework that the model was built with, such as 'transformers'
            or 'text-generation-inference'.
    """

    loaded: bool
    state: str
    compute_type: str
    framework: str


class InferenceTimeoutError(HTTPError, TimeoutError):
    """Error raised when a model is unavailable or the request times out."""


## IMPORT UTILS


def _import_aiohttp():
    # Make sure `aiohttp` is installed on the machine.
    if not is_aiohttp_available():
        raise ImportError("Please install aiohttp to use `AsyncInferenceClient` (`pip install aiohttp`).")
    import aiohttp

    return aiohttp


def _import_numpy():
    """Make sure `numpy` is installed on the machine."""
    if not is_numpy_available():
        raise ImportError("Please install numpy to use deal with embeddings (`pip install numpy`).")
    import numpy

    return numpy


def _import_pil_image():
    """Make sure `PIL` is installed on the machine."""
    if not is_pillow_available():
        raise ImportError(
            "Please install Pillow to use deal with images (`pip install Pillow`). If you don't want the image to be"
            " post-processed, use `client.post(...)` and get the raw response from the server."
        )
    from PIL import Image

    return Image


## RECOMMENDED MODELS

# Will be globally fetched only once (see '_fetch_recommended_models')
_RECOMMENDED_MODELS: Optional[Dict[str, Optional[str]]] = None


def _fetch_recommended_models() -> Dict[str, Optional[str]]:
    global _RECOMMENDED_MODELS
    if _RECOMMENDED_MODELS is None:
        response = get_session().get(f"{ENDPOINT}/api/tasks", headers=build_hf_headers())
        hf_raise_for_status(response)
        _RECOMMENDED_MODELS = {
            task: _first_or_none(details["widgetModels"]) for task, details in response.json().items()
        }
    return _RECOMMENDED_MODELS


def _first_or_none(items: List[Any]) -> Optional[Any]:
    try:
        return items[0] or None
    except IndexError:
        return None


## ENCODING / DECODING UTILS


@overload
def _open_as_binary(content: ContentT) -> ContextManager[BinaryT]:
    ...  # means "if input is not None, output is not None"


@overload
def _open_as_binary(content: Literal[None]) -> ContextManager[Literal[None]]:
    ...  # means "if input is None, output is None"


@contextmanager  # type: ignore
def _open_as_binary(content: Optional[ContentT]) -> Generator[Optional[BinaryT], None, None]:
    """Open `content` as a binary file, either from a URL, a local path, or raw bytes.

    Do nothing if `content` is None,

    TODO: handle a PIL.Image as input
    TODO: handle base64 as input
    """
    # If content is a string => must be either a URL or a path
    if isinstance(content, str):
        if content.startswith("https://") or content.startswith("http://"):
            logger.debug(f"Downloading content from {content}")
            yield get_session().get(content).content  # TODO: retrieve as stream and pipe to post request ?
            return
        content = Path(content)
        if not content.exists():
            raise FileNotFoundError(
                f"File not found at {content}. If `data` is a string, it must either be a URL or a path to a local"
                " file. To pass raw content, please encode it as bytes first."
            )

    # If content is a Path => open it
    if isinstance(content, Path):
        logger.debug(f"Opening content from {content}")
        with content.open("rb") as f:
            yield f
    else:
        # Otherwise: already a file-like object or None
        yield content


def _b64_encode(content: ContentT) -> str:
    """Encode a raw file (image, audio) into base64. Can be byes, an opened file, a path or a URL."""
    with _open_as_binary(content) as data:
        data_as_bytes = data if isinstance(data, bytes) else data.read()
        return base64.b64encode(data_as_bytes).decode()


def _b64_to_image(encoded_image: str) -> "Image":
    """Parse a base64-encoded string into a PIL Image."""
    Image = _import_pil_image()
    return Image.open(io.BytesIO(base64.b64decode(encoded_image)))


def _bytes_to_list(content: bytes) -> List:
    """Parse bytes from a Response object into a Python list.

    Expects the response body to be JSON-encoded data.

    NOTE: This is exactly the same implementation as `_bytes_to_dict` and will not complain if the returned data is a
    dictionary. The only advantage of having both is to help the user (and mypy) understand what kind of data to expect.
    """
    return json.loads(content.decode())


def _bytes_to_dict(content: bytes) -> Dict:
    """Parse bytes from a Response object into a Python dictionary.

    Expects the response body to be JSON-encoded data.

    NOTE: This is exactly the same implementation as `_bytes_to_list` and will not complain if the returned data is a
    list. The only advantage of having both is to help the user (and mypy) understand what kind of data to expect.
    """
    return json.loads(content.decode())


def _bytes_to_image(content: bytes) -> "Image":
    """Parse bytes from a Response object into a PIL Image.

    Expects the response body to be raw bytes. To deal with b64 encoded images, use `_b64_to_image` instead.
    """
    Image = _import_pil_image()
    return Image.open(io.BytesIO(content))


## STREAMING UTILS


def _stream_text_generation_response(
    bytes_output_as_lines: Iterable[bytes], details: bool
) -> Union[Iterable[str], Iterable[TextGenerationStreamResponse]]:
    # Parse ServerSentEvents
    for byte_payload in bytes_output_as_lines:
        # Skip line
        if byte_payload == b"\n":
            continue

        payload = byte_payload.decode("utf-8")

        # Event data
        if payload.startswith("data:"):
            # Decode payload
            json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
            # Either an error as being returned
            if json_payload.get("error") is not None:
                raise _parse_text_generation_error(json_payload["error"], json_payload.get("error_type"))
            # Or parse token payload
            output = TextGenerationStreamResponse(**json_payload)
            yield output.token.text if not details else output


async def _async_stream_text_generation_response(
    bytes_output_as_lines: AsyncIterable[bytes], details: bool
) -> Union[AsyncIterable[str], AsyncIterable[TextGenerationStreamResponse]]:
    # Parse ServerSentEvents
    async for byte_payload in bytes_output_as_lines:
        # Skip line
        if byte_payload == b"\n":
            continue

        payload = byte_payload.decode("utf-8")

        # Event data
        if payload.startswith("data:"):
            # Decode payload
            json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
            # Either an error as being returned
            if json_payload.get("error") is not None:
                raise _parse_text_generation_error(json_payload["error"], json_payload.get("error_type"))
            # Or parse token payload
            output = TextGenerationStreamResponse(**json_payload)
            yield output.token.text if not details else output


async def _async_yield_from(client: "ClientSession", response: "ClientResponse") -> AsyncIterable[bytes]:
    async for byte_payload in response.content:
        yield byte_payload
    await client.close()


# "TGI servers" are servers running with the `text-generation-inference` backend.
# This backend is the go-to solution to run large language models at scale. However,
# for some smaller models (e.g. "gpt2") the default `transformers` + `api-inference`
# solution is still in use.
#
# Both approaches have very similar APIs, but not exactly the same. What we do first in
# the `text_generation` method is to assume the model is served via TGI. If we realize
# it's not the case (i.e. we receive an HTTP 400 Bad Request), we fallback to the
# default API with a warning message. We remember for each model if it's a TGI server
# or not using `_NON_TGI_SERVERS` global variable.
#
# For more details, see https://github.com/huggingface/text-generation-inference and
# https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task.

_NON_TGI_SERVERS: Set[Optional[str]] = set()


def _set_as_non_tgi(model: Optional[str]) -> None:
    _NON_TGI_SERVERS.add(model)


def _is_tgi_server(model: Optional[str]) -> bool:
    return model not in _NON_TGI_SERVERS