File size: 11,331 Bytes
254a3c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# coding=utf-8
# Copyright 2023-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains utilities used by both the sync and async inference clients."""
import base64
import io
import json
import logging
from contextlib import contextmanager
from dataclasses import dataclass
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
AsyncIterable,
BinaryIO,
ContextManager,
Dict,
Generator,
Iterable,
List,
Literal,
Optional,
Set,
Union,
overload,
)
from requests import HTTPError
from ..constants import ENDPOINT
from ..utils import (
build_hf_headers,
get_session,
hf_raise_for_status,
is_aiohttp_available,
is_numpy_available,
is_pillow_available,
)
from ._text_generation import TextGenerationStreamResponse, _parse_text_generation_error
if TYPE_CHECKING:
from aiohttp import ClientResponse, ClientSession
from PIL import Image
# TYPES
UrlT = str
PathT = Union[str, Path]
BinaryT = Union[bytes, BinaryIO]
ContentT = Union[BinaryT, PathT, UrlT]
# Use to set a Accept: image/png header
TASKS_EXPECTING_IMAGES = {"text-to-image", "image-to-image"}
logger = logging.getLogger(__name__)
# Add dataclass for ModelStatus. We use this dataclass in get_model_status function.
@dataclass
class ModelStatus:
"""
This Dataclass represents the the model status in the Hugging Face Inference API.
Args:
loaded (`bool`):
If the model is currently loaded into Hugging Face's InferenceAPI. Models
are loaded on-demand, leading to the user's first request taking longer.
If a model is loaded, you can be assured that it is in a healthy state.
state (`str`):
The current state of the model. This can be 'Loaded', 'Loadable', 'TooBig'.
If a model's state is 'Loadable', it's not too big and has a supported
backend. Loadable models are automatically loaded when the user first
requests inference on the endpoint. This means it is transparent for the
user to load a model, except that the first call takes longer to complete.
compute_type (`str`):
The type of compute resource the model is using or will use, such as 'gpu' or 'cpu'.
framework (`str`):
The name of the framework that the model was built with, such as 'transformers'
or 'text-generation-inference'.
"""
loaded: bool
state: str
compute_type: str
framework: str
class InferenceTimeoutError(HTTPError, TimeoutError):
"""Error raised when a model is unavailable or the request times out."""
## IMPORT UTILS
def _import_aiohttp():
# Make sure `aiohttp` is installed on the machine.
if not is_aiohttp_available():
raise ImportError("Please install aiohttp to use `AsyncInferenceClient` (`pip install aiohttp`).")
import aiohttp
return aiohttp
def _import_numpy():
"""Make sure `numpy` is installed on the machine."""
if not is_numpy_available():
raise ImportError("Please install numpy to use deal with embeddings (`pip install numpy`).")
import numpy
return numpy
def _import_pil_image():
"""Make sure `PIL` is installed on the machine."""
if not is_pillow_available():
raise ImportError(
"Please install Pillow to use deal with images (`pip install Pillow`). If you don't want the image to be"
" post-processed, use `client.post(...)` and get the raw response from the server."
)
from PIL import Image
return Image
## RECOMMENDED MODELS
# Will be globally fetched only once (see '_fetch_recommended_models')
_RECOMMENDED_MODELS: Optional[Dict[str, Optional[str]]] = None
def _fetch_recommended_models() -> Dict[str, Optional[str]]:
global _RECOMMENDED_MODELS
if _RECOMMENDED_MODELS is None:
response = get_session().get(f"{ENDPOINT}/api/tasks", headers=build_hf_headers())
hf_raise_for_status(response)
_RECOMMENDED_MODELS = {
task: _first_or_none(details["widgetModels"]) for task, details in response.json().items()
}
return _RECOMMENDED_MODELS
def _first_or_none(items: List[Any]) -> Optional[Any]:
try:
return items[0] or None
except IndexError:
return None
## ENCODING / DECODING UTILS
@overload
def _open_as_binary(content: ContentT) -> ContextManager[BinaryT]:
... # means "if input is not None, output is not None"
@overload
def _open_as_binary(content: Literal[None]) -> ContextManager[Literal[None]]:
... # means "if input is None, output is None"
@contextmanager # type: ignore
def _open_as_binary(content: Optional[ContentT]) -> Generator[Optional[BinaryT], None, None]:
"""Open `content` as a binary file, either from a URL, a local path, or raw bytes.
Do nothing if `content` is None,
TODO: handle a PIL.Image as input
TODO: handle base64 as input
"""
# If content is a string => must be either a URL or a path
if isinstance(content, str):
if content.startswith("https://") or content.startswith("http://"):
logger.debug(f"Downloading content from {content}")
yield get_session().get(content).content # TODO: retrieve as stream and pipe to post request ?
return
content = Path(content)
if not content.exists():
raise FileNotFoundError(
f"File not found at {content}. If `data` is a string, it must either be a URL or a path to a local"
" file. To pass raw content, please encode it as bytes first."
)
# If content is a Path => open it
if isinstance(content, Path):
logger.debug(f"Opening content from {content}")
with content.open("rb") as f:
yield f
else:
# Otherwise: already a file-like object or None
yield content
def _b64_encode(content: ContentT) -> str:
"""Encode a raw file (image, audio) into base64. Can be byes, an opened file, a path or a URL."""
with _open_as_binary(content) as data:
data_as_bytes = data if isinstance(data, bytes) else data.read()
return base64.b64encode(data_as_bytes).decode()
def _b64_to_image(encoded_image: str) -> "Image":
"""Parse a base64-encoded string into a PIL Image."""
Image = _import_pil_image()
return Image.open(io.BytesIO(base64.b64decode(encoded_image)))
def _bytes_to_list(content: bytes) -> List:
"""Parse bytes from a Response object into a Python list.
Expects the response body to be JSON-encoded data.
NOTE: This is exactly the same implementation as `_bytes_to_dict` and will not complain if the returned data is a
dictionary. The only advantage of having both is to help the user (and mypy) understand what kind of data to expect.
"""
return json.loads(content.decode())
def _bytes_to_dict(content: bytes) -> Dict:
"""Parse bytes from a Response object into a Python dictionary.
Expects the response body to be JSON-encoded data.
NOTE: This is exactly the same implementation as `_bytes_to_list` and will not complain if the returned data is a
list. The only advantage of having both is to help the user (and mypy) understand what kind of data to expect.
"""
return json.loads(content.decode())
def _bytes_to_image(content: bytes) -> "Image":
"""Parse bytes from a Response object into a PIL Image.
Expects the response body to be raw bytes. To deal with b64 encoded images, use `_b64_to_image` instead.
"""
Image = _import_pil_image()
return Image.open(io.BytesIO(content))
## STREAMING UTILS
def _stream_text_generation_response(
bytes_output_as_lines: Iterable[bytes], details: bool
) -> Union[Iterable[str], Iterable[TextGenerationStreamResponse]]:
# Parse ServerSentEvents
for byte_payload in bytes_output_as_lines:
# Skip line
if byte_payload == b"\n":
continue
payload = byte_payload.decode("utf-8")
# Event data
if payload.startswith("data:"):
# Decode payload
json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
# Either an error as being returned
if json_payload.get("error") is not None:
raise _parse_text_generation_error(json_payload["error"], json_payload.get("error_type"))
# Or parse token payload
output = TextGenerationStreamResponse(**json_payload)
yield output.token.text if not details else output
async def _async_stream_text_generation_response(
bytes_output_as_lines: AsyncIterable[bytes], details: bool
) -> Union[AsyncIterable[str], AsyncIterable[TextGenerationStreamResponse]]:
# Parse ServerSentEvents
async for byte_payload in bytes_output_as_lines:
# Skip line
if byte_payload == b"\n":
continue
payload = byte_payload.decode("utf-8")
# Event data
if payload.startswith("data:"):
# Decode payload
json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
# Either an error as being returned
if json_payload.get("error") is not None:
raise _parse_text_generation_error(json_payload["error"], json_payload.get("error_type"))
# Or parse token payload
output = TextGenerationStreamResponse(**json_payload)
yield output.token.text if not details else output
async def _async_yield_from(client: "ClientSession", response: "ClientResponse") -> AsyncIterable[bytes]:
async for byte_payload in response.content:
yield byte_payload
await client.close()
# "TGI servers" are servers running with the `text-generation-inference` backend.
# This backend is the go-to solution to run large language models at scale. However,
# for some smaller models (e.g. "gpt2") the default `transformers` + `api-inference`
# solution is still in use.
#
# Both approaches have very similar APIs, but not exactly the same. What we do first in
# the `text_generation` method is to assume the model is served via TGI. If we realize
# it's not the case (i.e. we receive an HTTP 400 Bad Request), we fallback to the
# default API with a warning message. We remember for each model if it's a TGI server
# or not using `_NON_TGI_SERVERS` global variable.
#
# For more details, see https://github.com/huggingface/text-generation-inference and
# https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task.
_NON_TGI_SERVERS: Set[Optional[str]] = set()
def _set_as_non_tgi(model: Optional[str]) -> None:
_NON_TGI_SERVERS.add(model)
def _is_tgi_server(model: Optional[str]) -> bool:
return model not in _NON_TGI_SERVERS
|