File size: 31,077 Bytes
254a3c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
import copy
import warnings
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
from huggingface_hub.utils import yaml_dump
@dataclass
class EvalResult:
"""
Flattened representation of individual evaluation results found in model-index of Model Cards.
For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1.
Args:
task_type (`str`):
The task identifier. Example: "image-classification".
dataset_type (`str`):
The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets.
dataset_name (`str`):
A pretty name for the dataset. Example: "Common Voice (French)".
metric_type (`str`):
The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics.
metric_value (`Any`):
The metric value. Example: 0.9 or "20.0 ± 1.2".
task_name (`str`, *optional*):
A pretty name for the task. Example: "Speech Recognition".
dataset_config (`str`, *optional*):
The name of the dataset configuration used in `load_dataset()`.
Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info:
https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
dataset_split (`str`, *optional*):
The split used in `load_dataset()`. Example: "test".
dataset_revision (`str`, *optional*):
The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
Example: 5503434ddd753f426f4b38109466949a1217c2bb
dataset_args (`Dict[str, Any]`, *optional*):
The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}`
metric_name (`str`, *optional*):
A pretty name for the metric. Example: "Test WER".
metric_config (`str`, *optional*):
The name of the metric configuration used in `load_metric()`.
Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
metric_args (`Dict[str, Any]`, *optional*):
The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
verified (`bool`, *optional*):
Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
verify_token (`str`, *optional*):
A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
source_name (`str`, *optional*):
The name of the source of the evaluation result. Example: "Open LLM Leaderboard".
source_url (`str`, *optional*):
The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard".
"""
# Required
# The task identifier
# Example: automatic-speech-recognition
task_type: str
# The dataset identifier
# Example: common_voice. Use dataset id from https://hf.co/datasets
dataset_type: str
# A pretty name for the dataset.
# Example: Common Voice (French)
dataset_name: str
# The metric identifier
# Example: wer. Use metric id from https://hf.co/metrics
metric_type: str
# Value of the metric.
# Example: 20.0 or "20.0 ± 1.2"
metric_value: Any
# Optional
# A pretty name for the task.
# Example: Speech Recognition
task_name: Optional[str] = None
# The name of the dataset configuration used in `load_dataset()`.
# Example: fr in `load_dataset("common_voice", "fr")`.
# See the `datasets` docs for more info:
# https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
dataset_config: Optional[str] = None
# The split used in `load_dataset()`.
# Example: test
dataset_split: Optional[str] = None
# The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
# Example: 5503434ddd753f426f4b38109466949a1217c2bb
dataset_revision: Optional[str] = None
# The arguments passed during `Metric.compute()`.
# Example for `bleu`: max_order: 4
dataset_args: Optional[Dict[str, Any]] = None
# A pretty name for the metric.
# Example: Test WER
metric_name: Optional[str] = None
# The name of the metric configuration used in `load_metric()`.
# Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
# See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
metric_config: Optional[str] = None
# The arguments passed during `Metric.compute()`.
# Example for `bleu`: max_order: 4
metric_args: Optional[Dict[str, Any]] = None
# Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
verified: Optional[bool] = None
# A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
verify_token: Optional[str] = None
# The name of the source of the evaluation result.
# Example: Open LLM Leaderboard
source_name: Optional[str] = None
# The URL of the source of the evaluation result.
# Example: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
source_url: Optional[str] = None
@property
def unique_identifier(self) -> tuple:
"""Returns a tuple that uniquely identifies this evaluation."""
return (
self.task_type,
self.dataset_type,
self.dataset_config,
self.dataset_split,
self.dataset_revision,
)
def is_equal_except_value(self, other: "EvalResult") -> bool:
"""
Return True if `self` and `other` describe exactly the same metric but with a
different value.
"""
for key, _ in self.__dict__.items():
if key == "metric_value":
continue
# For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`,
# so we exclude it here in the comparison.
if key != "verify_token" and getattr(self, key) != getattr(other, key):
return False
return True
def __post_init__(self) -> None:
if self.source_name is not None and self.source_url is None:
raise ValueError("If `source_name` is provided, `source_url` must also be provided.")
@dataclass
class CardData:
"""Structure containing metadata from a RepoCard.
[`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`].
Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data
(example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not
inherit from `dict` to allow this export step.
"""
def __init__(self, ignore_metadata_errors: bool = False, **kwargs):
self.__dict__.update(kwargs)
def to_dict(self) -> Dict[str, Any]:
"""Converts CardData to a dict.
Returns:
`dict`: CardData represented as a dictionary ready to be dumped to a YAML
block for inclusion in a README.md file.
"""
data_dict = copy.deepcopy(self.__dict__)
self._to_dict(data_dict)
return _remove_none(data_dict)
def _to_dict(self, data_dict):
"""Use this method in child classes to alter the dict representation of the data. Alter the dict in-place.
Args:
data_dict (`dict`): The raw dict representation of the card data.
"""
pass
def to_yaml(self, line_break=None) -> str:
"""Dumps CardData to a YAML block for inclusion in a README.md file.
Args:
line_break (str, *optional*):
The line break to use when dumping to yaml.
Returns:
`str`: CardData represented as a YAML block.
"""
return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip()
def __repr__(self):
return repr(self.__dict__)
def __str__(self):
return self.to_yaml()
def get(self, key: str, default: Any = None) -> Any:
"""Get value for a given metadata key."""
return self.__dict__.get(key, default)
def pop(self, key: str, default: Any = None) -> Any:
"""Pop value for a given metadata key."""
return self.__dict__.pop(key, default)
def __getitem__(self, key: str) -> Any:
"""Get value for a given metadata key."""
return self.__dict__[key]
def __setitem__(self, key: str, value: Any) -> None:
"""Set value for a given metadata key."""
self.__dict__[key] = value
def __contains__(self, key: str) -> bool:
"""Check if a given metadata key is set."""
return key in self.__dict__
def __len__(self) -> int:
"""Return the number of metadata keys set."""
return len(self.__dict__)
class ModelCardData(CardData):
"""Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
Args:
language (`Union[str, List[str]]`, *optional*):
Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or
639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`.
license (`str`, *optional*):
License of this model. Example: apache-2.0 or any license from
https://huggingface.co/docs/hub/repositories-licenses. Defaults to None.
library_name (`str`, *optional*):
Name of library used by this model. Example: keras or any library from
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts.
Defaults to None.
tags (`List[str]`, *optional*):
List of tags to add to your model that can be used when filtering on the Hugging
Face Hub. Defaults to None.
datasets (`List[str]`, *optional*):
List of datasets that were used to train this model. Should be a dataset ID
found on https://hf.co/datasets. Defaults to None.
metrics (`List[str]`, *optional*):
List of metrics used to evaluate this model. Should be a metric name that can be found
at https://hf.co/metrics. Example: 'accuracy'. Defaults to None.
eval_results (`Union[List[EvalResult], EvalResult]`, *optional*):
List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided,
`model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`.
model_name (`str`, *optional*):
A name for this model. It is used along with
`eval_results` to construct the `model-index` within the card's metadata. The name
you supply here is what will be used on PapersWithCode's leaderboards. If None is provided
then the repo name is used as a default. Defaults to None.
ignore_metadata_errors (`str`):
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
the process. Use it at your own risk.
kwargs (`dict`, *optional*):
Additional metadata that will be added to the model card. Defaults to None.
Example:
```python
>>> from huggingface_hub import ModelCardData
>>> card_data = ModelCardData(
... language="en",
... license="mit",
... library_name="timm",
... tags=['image-classification', 'resnet'],
... )
>>> card_data.to_dict()
{'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']}
```
"""
def __init__(
self,
*,
language: Optional[Union[str, List[str]]] = None,
license: Optional[str] = None,
library_name: Optional[str] = None,
tags: Optional[List[str]] = None,
datasets: Optional[List[str]] = None,
metrics: Optional[List[str]] = None,
eval_results: Optional[List[EvalResult]] = None,
model_name: Optional[str] = None,
ignore_metadata_errors: bool = False,
**kwargs,
):
self.language = language
self.license = license
self.library_name = library_name
self.tags = tags
self.datasets = datasets
self.metrics = metrics
self.eval_results = eval_results
self.model_name = model_name
model_index = kwargs.pop("model-index", None)
if model_index:
try:
model_name, eval_results = model_index_to_eval_results(model_index)
self.model_name = model_name
self.eval_results = eval_results
except (KeyError, TypeError) as error:
if ignore_metadata_errors:
warnings.warn("Invalid model-index. Not loading eval results into CardData.")
else:
raise ValueError(
f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass"
" `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:"
" some information will be lost. Use it at your own risk."
)
super().__init__(**kwargs)
if self.eval_results:
if type(self.eval_results) == EvalResult:
self.eval_results = [self.eval_results]
if self.model_name is None:
raise ValueError("Passing `eval_results` requires `model_name` to be set.")
def _to_dict(self, data_dict):
"""Format the internal data dict. In this case, we convert eval results to a valid model index"""
if self.eval_results is not None:
data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results)
del data_dict["eval_results"], data_dict["model_name"]
class DatasetCardData(CardData):
"""Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
Args:
language (`List[str]`, *optional*):
Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or
639-3 code (two/three letters), or a special value like "code", "multilingual".
license (`Union[str, List[str]]`, *optional*):
License(s) of this dataset. Example: apache-2.0 or any license from
https://huggingface.co/docs/hub/repositories-licenses.
annotations_creators (`Union[str, List[str]]`, *optional*):
How the annotations for the dataset were created.
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'.
language_creators (`Union[str, List[str]]`, *optional*):
How the text-based data in the dataset was created.
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other'
multilinguality (`Union[str, List[str]]`, *optional*):
Whether the dataset is multilingual.
Options are: 'monolingual', 'multilingual', 'translation', 'other'.
size_categories (`Union[str, List[str]]`, *optional*):
The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K',
'100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'.
source_datasets (`List[str]]`, *optional*):
Indicates whether the dataset is an original dataset or extended from another existing dataset.
Options are: 'original' and 'extended'.
task_categories (`Union[str, List[str]]`, *optional*):
What categories of task does the dataset support?
task_ids (`Union[str, List[str]]`, *optional*):
What specific tasks does the dataset support?
paperswithcode_id (`str`, *optional*):
ID of the dataset on PapersWithCode.
pretty_name (`str`, *optional*):
A more human-readable name for the dataset. (ex. "Cats vs. Dogs")
train_eval_index (`Dict`, *optional*):
A dictionary that describes the necessary spec for doing evaluation on the Hub.
If not provided, it will be gathered from the 'train-eval-index' key of the kwargs.
config_names (`Union[str, List[str]]`, *optional*):
A list of the available dataset configs for the dataset.
"""
def __init__(
self,
*,
language: Optional[Union[str, List[str]]] = None,
license: Optional[Union[str, List[str]]] = None,
annotations_creators: Optional[Union[str, List[str]]] = None,
language_creators: Optional[Union[str, List[str]]] = None,
multilinguality: Optional[Union[str, List[str]]] = None,
size_categories: Optional[Union[str, List[str]]] = None,
source_datasets: Optional[List[str]] = None,
task_categories: Optional[Union[str, List[str]]] = None,
task_ids: Optional[Union[str, List[str]]] = None,
paperswithcode_id: Optional[str] = None,
pretty_name: Optional[str] = None,
train_eval_index: Optional[Dict] = None,
config_names: Optional[Union[str, List[str]]] = None,
ignore_metadata_errors: bool = False,
**kwargs,
):
self.annotations_creators = annotations_creators
self.language_creators = language_creators
self.language = language
self.license = license
self.multilinguality = multilinguality
self.size_categories = size_categories
self.source_datasets = source_datasets
self.task_categories = task_categories
self.task_ids = task_ids
self.paperswithcode_id = paperswithcode_id
self.pretty_name = pretty_name
self.config_names = config_names
# TODO - maybe handle this similarly to EvalResult?
self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None)
super().__init__(**kwargs)
def _to_dict(self, data_dict):
data_dict["train-eval-index"] = data_dict.pop("train_eval_index")
class SpaceCardData(CardData):
"""Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference.
Args:
title (`str`, *optional*)
Title of the Space.
sdk (`str`, *optional*)
SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`).
sdk_version (`str`, *optional*)
Version of the used SDK (if Gradio/Streamlit sdk).
python_version (`str`, *optional*)
Python version used in the Space (if Gradio/Streamlit sdk).
app_file (`str`, *optional*)
Path to your main application file (which contains either gradio or streamlit Python code, or static html code).
Path is relative to the root of the repository.
app_port (`str`, *optional*)
Port on which your application is running. Used only if sdk is `docker`.
license (`str`, *optional*)
License of this model. Example: apache-2.0 or any license from
https://huggingface.co/docs/hub/repositories-licenses.
duplicated_from (`str`, *optional*)
ID of the original Space if this is a duplicated Space.
models (List[`str`], *optional*)
List of models related to this Space. Should be a dataset ID found on https://hf.co/models.
datasets (`List[str]`, *optional*)
List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets.
tags (`List[str]`, *optional*)
List of tags to add to your Space that can be used when filtering on the Hub.
ignore_metadata_errors (`str`):
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
the process. Use it at your own risk.
kwargs (`dict`, *optional*):
Additional metadata that will be added to the space card.
Example:
```python
>>> from huggingface_hub import SpaceCardData
>>> card_data = SpaceCardData(
... title="Dreambooth Training",
... license="mit",
... sdk="gradio",
... duplicated_from="multimodalart/dreambooth-training"
... )
>>> card_data.to_dict()
{'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'}
```
"""
def __init__(
self,
*,
title: Optional[str] = None,
sdk: Optional[str] = None,
sdk_version: Optional[str] = None,
python_version: Optional[str] = None,
app_file: Optional[str] = None,
app_port: Optional[int] = None,
license: Optional[str] = None,
duplicated_from: Optional[str] = None,
models: Optional[List[str]] = None,
datasets: Optional[List[str]] = None,
tags: Optional[List[str]] = None,
ignore_metadata_errors: bool = False,
**kwargs,
):
self.title = title
self.sdk = sdk
self.sdk_version = sdk_version
self.python_version = python_version
self.app_file = app_file
self.app_port = app_port
self.license = license
self.duplicated_from = duplicated_from
self.models = models
self.datasets = datasets
self.tags = tags
super().__init__(**kwargs)
def model_index_to_eval_results(model_index: List[Dict[str, Any]]) -> Tuple[str, List[EvalResult]]:
"""Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects.
A detailed spec of the model index can be found here:
https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
Args:
model_index (`List[Dict[str, Any]]`):
A model index data structure, likely coming from a README.md file on the
Hugging Face Hub.
Returns:
model_name (`str`):
The name of the model as found in the model index. This is used as the
identifier for the model on leaderboards like PapersWithCode.
eval_results (`List[EvalResult]`):
A list of `huggingface_hub.EvalResult` objects containing the metrics
reported in the provided model_index.
Example:
```python
>>> from huggingface_hub.repocard_data import model_index_to_eval_results
>>> # Define a minimal model index
>>> model_index = [
... {
... "name": "my-cool-model",
... "results": [
... {
... "task": {
... "type": "image-classification"
... },
... "dataset": {
... "type": "beans",
... "name": "Beans"
... },
... "metrics": [
... {
... "type": "accuracy",
... "value": 0.9
... }
... ]
... }
... ]
... }
... ]
>>> model_name, eval_results = model_index_to_eval_results(model_index)
>>> model_name
'my-cool-model'
>>> eval_results[0].task_type
'image-classification'
>>> eval_results[0].metric_type
'accuracy'
```
"""
eval_results = []
for elem in model_index:
name = elem["name"]
results = elem["results"]
for result in results:
task_type = result["task"]["type"]
task_name = result["task"].get("name")
dataset_type = result["dataset"]["type"]
dataset_name = result["dataset"]["name"]
dataset_config = result["dataset"].get("config")
dataset_split = result["dataset"].get("split")
dataset_revision = result["dataset"].get("revision")
dataset_args = result["dataset"].get("args")
source_name = result.get("source", {}).get("name")
source_url = result.get("source", {}).get("url")
for metric in result["metrics"]:
metric_type = metric["type"]
metric_value = metric["value"]
metric_name = metric.get("name")
metric_args = metric.get("args")
metric_config = metric.get("config")
verified = metric.get("verified")
verify_token = metric.get("verifyToken")
eval_result = EvalResult(
task_type=task_type, # Required
dataset_type=dataset_type, # Required
dataset_name=dataset_name, # Required
metric_type=metric_type, # Required
metric_value=metric_value, # Required
task_name=task_name,
dataset_config=dataset_config,
dataset_split=dataset_split,
dataset_revision=dataset_revision,
dataset_args=dataset_args,
metric_name=metric_name,
metric_args=metric_args,
metric_config=metric_config,
verified=verified,
verify_token=verify_token,
source_name=source_name,
source_url=source_url,
)
eval_results.append(eval_result)
return name, eval_results
def _remove_none(obj):
"""
Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778
"""
if isinstance(obj, (list, tuple, set)):
return type(obj)(_remove_none(x) for x in obj if x is not None)
elif isinstance(obj, dict):
return type(obj)((_remove_none(k), _remove_none(v)) for k, v in obj.items() if k is not None and v is not None)
else:
return obj
def eval_results_to_model_index(model_name: str, eval_results: List[EvalResult]) -> List[Dict[str, Any]]:
"""Takes in given model name and list of `huggingface_hub.EvalResult` and returns a
valid model-index that will be compatible with the format expected by the
Hugging Face Hub.
Args:
model_name (`str`):
Name of the model (ex. "my-cool-model"). This is used as the identifier
for the model on leaderboards like PapersWithCode.
eval_results (`List[EvalResult]`):
List of `huggingface_hub.EvalResult` objects containing the metrics to be
reported in the model-index.
Returns:
model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index.
Example:
```python
>>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult
>>> # Define minimal eval_results
>>> eval_results = [
... EvalResult(
... task_type="image-classification", # Required
... dataset_type="beans", # Required
... dataset_name="Beans", # Required
... metric_type="accuracy", # Required
... metric_value=0.9, # Required
... )
... ]
>>> eval_results_to_model_index("my-cool-model", eval_results)
[{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}]
```
"""
# Metrics are reported on a unique task-and-dataset basis.
# Here, we make a map of those pairs and the associated EvalResults.
task_and_ds_types_map: Dict[Any, List[EvalResult]] = defaultdict(list)
for eval_result in eval_results:
task_and_ds_types_map[eval_result.unique_identifier].append(eval_result)
# Use the map from above to generate the model index data.
model_index_data = []
for results in task_and_ds_types_map.values():
# All items from `results` share same metadata
sample_result = results[0]
data = {
"task": {
"type": sample_result.task_type,
"name": sample_result.task_name,
},
"dataset": {
"name": sample_result.dataset_name,
"type": sample_result.dataset_type,
"config": sample_result.dataset_config,
"split": sample_result.dataset_split,
"revision": sample_result.dataset_revision,
"args": sample_result.dataset_args,
},
"metrics": [
{
"type": result.metric_type,
"value": result.metric_value,
"name": result.metric_name,
"config": result.metric_config,
"args": result.metric_args,
"verified": result.verified,
"verifyToken": result.verify_token,
}
for result in results
],
}
if sample_result.source_url is not None:
source = {
"url": sample_result.source_url,
}
if sample_result.source_name is not None:
source["name"] = sample_result.source_name
data["source"] = source
model_index_data.append(data)
# TODO - Check if there cases where this list is longer than one?
# Finally, the model index itself is list of dicts.
model_index = [
{
"name": model_name,
"results": model_index_data,
}
]
return _remove_none(model_index)
|