File size: 7,717 Bytes
254a3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import re
import typing
from typing import Literal, Optional, Tuple


# Possible values for env variables


ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})


def _is_true(value: Optional[str]) -> bool:
    if value is None:
        return False
    return value.upper() in ENV_VARS_TRUE_VALUES


def _as_int(value: Optional[str]) -> Optional[int]:
    if value is None:
        return None
    return int(value)


# Constants for file downloads

PYTORCH_WEIGHTS_NAME = "pytorch_model.bin"
TF2_WEIGHTS_NAME = "tf_model.h5"
TF_WEIGHTS_NAME = "model.ckpt"
FLAX_WEIGHTS_NAME = "flax_model.msgpack"
CONFIG_NAME = "config.json"
REPOCARD_NAME = "README.md"
DEFAULT_ETAG_TIMEOUT = 10
DEFAULT_DOWNLOAD_TIMEOUT = 10
DEFAULT_REQUEST_TIMEOUT = 10
DOWNLOAD_CHUNK_SIZE = 10 * 1024 * 1024
HF_TRANSFER_CONCURRENCY = 100

# Constants for safetensors repos

SAFETENSORS_SINGLE_FILE = "model.safetensors"
SAFETENSORS_INDEX_FILE = "model.safetensors.index.json"
SAFETENSORS_MAX_HEADER_LENGTH = 25_000_000

# Git-related constants

DEFAULT_REVISION = "main"
REGEX_COMMIT_OID = re.compile(r"[A-Fa-f0-9]{5,40}")

HUGGINGFACE_CO_URL_HOME = "https://huggingface.co/"

_staging_mode = _is_true(os.environ.get("HUGGINGFACE_CO_STAGING"))

ENDPOINT = os.getenv("HF_ENDPOINT") or ("https://hub-ci.huggingface.co" if _staging_mode else "https://huggingface.co")

HUGGINGFACE_CO_URL_TEMPLATE = ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}"
HUGGINGFACE_HEADER_X_REPO_COMMIT = "X-Repo-Commit"
HUGGINGFACE_HEADER_X_LINKED_ETAG = "X-Linked-Etag"
HUGGINGFACE_HEADER_X_LINKED_SIZE = "X-Linked-Size"

INFERENCE_ENDPOINT = os.environ.get("HF_INFERENCE_ENDPOINT", "https://api-inference.huggingface.co")

# See https://huggingface.co/docs/inference-endpoints/index
INFERENCE_ENDPOINTS_ENDPOINT = "https://api.endpoints.huggingface.cloud/v2"


REPO_ID_SEPARATOR = "--"
# ^ this substring is not allowed in repo_ids on hf.co
# and is the canonical one we use for serialization of repo ids elsewhere.


REPO_TYPE_DATASET = "dataset"
REPO_TYPE_SPACE = "space"
REPO_TYPE_MODEL = "model"
REPO_TYPES = [None, REPO_TYPE_MODEL, REPO_TYPE_DATASET, REPO_TYPE_SPACE]
SPACES_SDK_TYPES = ["gradio", "streamlit", "docker", "static"]

REPO_TYPES_URL_PREFIXES = {
    REPO_TYPE_DATASET: "datasets/",
    REPO_TYPE_SPACE: "spaces/",
}
REPO_TYPES_MAPPING = {
    "datasets": REPO_TYPE_DATASET,
    "spaces": REPO_TYPE_SPACE,
    "models": REPO_TYPE_MODEL,
}

DiscussionTypeFilter = Literal["all", "discussion", "pull_request"]
DISCUSSION_TYPES: Tuple[DiscussionTypeFilter, ...] = typing.get_args(DiscussionTypeFilter)
DiscussionStatusFilter = Literal["all", "open", "closed"]
DISCUSSION_STATUS: Tuple[DiscussionTypeFilter, ...] = typing.get_args(DiscussionStatusFilter)

# default cache
default_home = os.path.join(os.path.expanduser("~"), ".cache")
HF_HOME = os.path.expanduser(
    os.getenv(
        "HF_HOME",
        os.path.join(os.getenv("XDG_CACHE_HOME", default_home), "huggingface"),
    )
)
hf_cache_home = HF_HOME  # for backward compatibility. TODO: remove this in 1.0.0

default_cache_path = os.path.join(HF_HOME, "hub")
default_assets_cache_path = os.path.join(HF_HOME, "assets")

# Legacy env variables
HUGGINGFACE_HUB_CACHE = os.getenv("HUGGINGFACE_HUB_CACHE", default_cache_path)
HUGGINGFACE_ASSETS_CACHE = os.getenv("HUGGINGFACE_ASSETS_CACHE", default_assets_cache_path)

# New env variables
HF_HUB_CACHE = os.getenv("HF_HUB_CACHE", HUGGINGFACE_HUB_CACHE)
HF_ASSETS_CACHE = os.getenv("HF_ASSETS_CACHE", HUGGINGFACE_ASSETS_CACHE)

HF_HUB_OFFLINE = _is_true(os.environ.get("HF_HUB_OFFLINE") or os.environ.get("TRANSFORMERS_OFFLINE"))

# Opt-out from telemetry requests
HF_HUB_DISABLE_TELEMETRY = (
    _is_true(os.environ.get("HF_HUB_DISABLE_TELEMETRY"))  # HF-specific env variable
    or _is_true(os.environ.get("DISABLE_TELEMETRY"))
    or _is_true(os.environ.get("DO_NOT_TRACK"))  # https://consoledonottrack.com/
)

# In the past, token was stored in a hardcoded location
# `_OLD_HF_TOKEN_PATH` is deprecated and will be removed "at some point".
# See https://github.com/huggingface/huggingface_hub/issues/1232
_OLD_HF_TOKEN_PATH = os.path.expanduser("~/.huggingface/token")
HF_TOKEN_PATH = os.path.join(HF_HOME, "token")


if _staging_mode:
    # In staging mode, we use a different cache to ensure we don't mix up production and staging data or tokens
    _staging_home = os.path.join(os.path.expanduser("~"), ".cache", "huggingface_staging")
    HUGGINGFACE_HUB_CACHE = os.path.join(_staging_home, "hub")
    _OLD_HF_TOKEN_PATH = os.path.join(_staging_home, "_old_token")
    HF_TOKEN_PATH = os.path.join(_staging_home, "token")

# Here, `True` will disable progress bars globally without possibility of enabling it
# programmatically. `False` will enable them without possibility of disabling them.
# If environment variable is not set (None), then the user is free to enable/disable
# them programmatically.
# TL;DR: env variable has priority over code
__HF_HUB_DISABLE_PROGRESS_BARS = os.environ.get("HF_HUB_DISABLE_PROGRESS_BARS")
HF_HUB_DISABLE_PROGRESS_BARS: Optional[bool] = (
    _is_true(__HF_HUB_DISABLE_PROGRESS_BARS) if __HF_HUB_DISABLE_PROGRESS_BARS is not None else None
)

# Disable warning on machines that do not support symlinks (e.g. Windows non-developer)
HF_HUB_DISABLE_SYMLINKS_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_SYMLINKS_WARNING"))

# Disable warning when using experimental features
HF_HUB_DISABLE_EXPERIMENTAL_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_EXPERIMENTAL_WARNING"))

# Disable sending the cached token by default is all HTTP requests to the Hub
HF_HUB_DISABLE_IMPLICIT_TOKEN: bool = _is_true(os.environ.get("HF_HUB_DISABLE_IMPLICIT_TOKEN"))

# Enable fast-download using external dependency "hf_transfer"
# See:
# - https://pypi.org/project/hf-transfer/
# - https://github.com/huggingface/hf_transfer (private)
HF_HUB_ENABLE_HF_TRANSFER: bool = _is_true(os.environ.get("HF_HUB_ENABLE_HF_TRANSFER"))


# Used if download to `local_dir` and `local_dir_use_symlinks="auto"`
# Files smaller than 5MB are copy-pasted while bigger files are symlinked. The idea is to save disk-usage by symlinking
# huge files (i.e. LFS files most of the time) while allowing small files to be manually edited in local folder.
HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD: int = (
    _as_int(os.environ.get("HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD")) or 5 * 1024 * 1024
)

# Used to override the etag timeout on a system level
HF_HUB_ETAG_TIMEOUT: int = _as_int(os.environ.get("HF_HUB_ETAG_TIMEOUT")) or DEFAULT_ETAG_TIMEOUT

# Used to override the get request timeout on a system level
HF_HUB_DOWNLOAD_TIMEOUT: int = _as_int(os.environ.get("HF_HUB_DOWNLOAD_TIMEOUT")) or DEFAULT_DOWNLOAD_TIMEOUT

# List frameworks that are handled by the InferenceAPI service. Useful to scan endpoints and check which models are
# deployed and running. Since 95% of the models are using the top 4 frameworks listed below, we scan only those by
# default. We still keep the full list of supported frameworks in case we want to scan all of them.
MAIN_INFERENCE_API_FRAMEWORKS = [
    "diffusers",
    "sentence-transformers",
    "text-generation-inference",
    "transformers",
]

ALL_INFERENCE_API_FRAMEWORKS = MAIN_INFERENCE_API_FRAMEWORKS + [
    "adapter-transformers",
    "allennlp",
    "asteroid",
    "bertopic",
    "doctr",
    "espnet",
    "fairseq",
    "fastai",
    "fasttext",
    "flair",
    "generic",
    "k2",
    "keras",
    "mindspore",
    "nemo",
    "open_clip",
    "paddlenlp",
    "peft",
    "pyannote-audio",
    "sklearn",
    "spacy",
    "span-marker",
    "speechbrain",
    "stanza",
    "timm",
]