metadata
base_model: nvidia/Llama-3.1-Nemotron-70B-Reward-HF
datasets:
- nvidia/HelpSteer2
language:
- en
license: llama3.1
tags:
- nvidia
- llama3.1
- reward model
- mlx
inference: false
fine-tuning: false
mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41
The Model mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41 was converted to MLX format from nvidia/Llama-3.1-Nemotron-70B-Reward-HF using mlx-lm version 0.18.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)