metadata
license: apache-2.0
library_name: transformers
tags:
- code
- granite
- mlx
base_model: ibm-granite/granite-34b-code-base
datasets:
- bigcode/commitpackft
- TIGER-Lab/MathInstruct
- meta-math/MetaMathQA
- glaiveai/glaive-code-assistant-v3
- glaive-function-calling-v2
- bugdaryan/sql-create-context-instruction
- garage-bAInd/Open-Platypus
- nvidia/HelpSteer
metrics:
- code_eval
pipeline_tag: text-generation
inference: true
model-index:
- name: granite-34b-code-instruct
results:
- task:
type: text-generation
dataset:
name: HumanEvalSynthesis(Python)
type: bigcode/humanevalpack
metrics:
- type: pass@1
value: 62.2
name: pass@1
- type: pass@1
value: 56.7
name: pass@1
- type: pass@1
value: 62.8
name: pass@1
- type: pass@1
value: 47.6
name: pass@1
- type: pass@1
value: 57.9
name: pass@1
- type: pass@1
value: 41.5
name: pass@1
- type: pass@1
value: 53
name: pass@1
- type: pass@1
value: 45.1
name: pass@1
- type: pass@1
value: 50.6
name: pass@1
- type: pass@1
value: 36
name: pass@1
- type: pass@1
value: 42.7
name: pass@1
- type: pass@1
value: 23.8
name: pass@1
- type: pass@1
value: 54.9
name: pass@1
- type: pass@1
value: 47.6
name: pass@1
- type: pass@1
value: 55.5
name: pass@1
- type: pass@1
value: 51.2
name: pass@1
- type: pass@1
value: 47
name: pass@1
- type: pass@1
value: 45.1
name: pass@1
mlx-community/granite-34b-code-instruct-4bit
The Model mlx-community/granite-34b-code-instruct-4bit was converted to MLX format from ibm-granite/granite-34b-code-instruct using mlx-lm version 0.13.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/granite-34b-code-instruct-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)