File size: 2,325 Bytes
43121de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import streamlit as st
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings

# Disable warnings and progress bars
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')

# Set device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.set_default_device(device)

@st.cache_resource
def load_model():
    model_name = 'cognitivecomputations/dolphin-vision-72b'
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        device_map='auto',
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        trust_remote_code=True
    )
    return model, tokenizer

def generate_response(model, tokenizer, prompt, image=None):
    messages = [
        {"role": "user", "content": f'<image>\n{prompt}' if image else prompt}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
    input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
    
    if image:
        image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
    else:
        image_tensor = None
    
    output_ids = model.generate(
        input_ids,
        images=image_tensor,
        max_new_tokens=2048,
        use_cache=True
    )[0]
    
    return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()

st.title("Chat with DolphinVision 🐬")

model, tokenizer = load_model()

uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
image = None
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption='Uploaded Image', use_column_width=True)

user_input = st.text_input("You:", "")

if st.button("Send"):
    if user_input:
        with st.spinner("Generating response..."):
            response = generate_response(model, tokenizer, user_input, image)
        st.text_area("DolphinVision:", value=response, height=200)
    else:
        st.warning("Please enter a message.")