File size: 1,480 Bytes
5fd5acb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
language:
- en
license: apache-2.0
tags:
- Mistral
- instruct
- finetune
- chatml
- DPO
- RLHF
- gpt4
- synthetic data
- distillation
- function calling
- json mode
- mlx
base_model: NousResearch/Hermes-2-Pro-Mistral-7B
datasets:
- teknium/OpenHermes-2.5
widget:
- example_title: Hermes 2 Pro
messages:
- role: system
content: You are a sentient, superintelligent artificial general intelligence,
here to teach and assist me.
- role: user
content: Write a short story about Goku discovering kirby has teamed up with Majin
Buu to destroy the world.
model-index:
- name: Hermes-2-Pro-Mistral-7B
results: []
---
# mlx-community/Hermes-2-Pro-Mistral-7B-3bit
The Model [mlx-community/Hermes-2-Pro-Mistral-7B-3bit](https://huggingface.co/mlx-community/Hermes-2-Pro-Mistral-7B-3bit) was
converted to MLX format from [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)
using mlx-lm version **0.20.4**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Hermes-2-Pro-Mistral-7B-3bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|