File size: 46,372 Bytes
b5c52ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
# coding=utf-8
# Copyright 2024 Microsoft and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Florence-2.
"""

import re
import logging
from typing import List, Optional, Union
import numpy as np

import torch

from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, is_valid_image
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import (
    PaddingStrategy,
    PreTokenizedInput,
    TextInput,
    TruncationStrategy,
)
from transformers.utils import TensorType


logger = logging.getLogger(__name__)

# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
    return isinstance(val, str) and val.startswith("http")

# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
    return is_url(elem) or is_valid_image(elem)


def _is_str_or_image(elem):
    return isinstance(elem, (str)) or is_image_or_image_url(elem)


class Florence2Processor(ProcessorMixin):
    r"""
    Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.

    [`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
    [`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.

    Args:
        image_processor ([`CLIPImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`BartTokenizerFast`], *optional*):
            The tokenizer is a required input.
    """

    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "CLIPImageProcessor"
    tokenizer_class = ("BartTokenizer", "BartTokenizerFast")

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
    ):
        if image_processor is None:
            raise ValueError("You need to specify an `image_processor`.")
        if tokenizer is None:
            raise ValueError("You need to specify a `tokenizer`.")
        if not hasattr(image_processor, "image_seq_length"):
            raise ValueError("Image processor is missing an `image_seq_length` attribute.")

        self.image_seq_length = image_processor.image_seq_length

        tokens_to_add = {
                'additional_special_tokens': \
                    tokenizer.additional_special_tokens + \
                    ['<od>', '</od>', '<ocr>', '</ocr>'] + \
                    [f'<loc_{x}>' for x in range(1000)] + \
                    ['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
            }
        tokenizer.add_special_tokens(tokens_to_add)

        self.tasks_answer_post_processing_type = {
            '<OCR>': 'pure_text',
            '<OCR_WITH_REGION>': 'ocr',
            '<CAPTION>': 'pure_text',
            '<DETAILED_CAPTION>': 'pure_text',
            '<MORE_DETAILED_CAPTION>': 'pure_text',
            '<OD>': 'description_with_bboxes',
            '<DENSE_REGION_CAPTION>': 'description_with_bboxes',
            '<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
            '<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
            '<REGION_TO_SEGMENTATION>': 'polygons',
            '<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
            '<REGION_TO_CATEGORY>': 'pure_text',
            '<REGION_TO_DESCRIPTION>': 'pure_text',
            '<REGION_TO_OCR>': 'pure_text',
            '<REGION_PROPOSAL>': 'bboxes'
        }

        self.task_prompts_without_inputs = {
            '<OCR>': 'What is the text in the image?',
            '<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
            '<CAPTION>': 'What does the image describe?',
            '<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
            '<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
            '<OD>': 'Locate the objects with category name in the image.',
            '<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
            '<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
        }

        self.task_prompts_with_input = {
            '<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
            '<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
            '<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
            '<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
            '<REGION_TO_CATEGORY>': 'What is the region {input}?',
            '<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
            '<REGION_TO_OCR>': 'What text is in the region {input}?',
        }

        self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)


        super().__init__(image_processor, tokenizer)
    
    def _construct_prompts(self, text):
        # replace the task tokens with the task prompts if task token is in the text
        prompts = []
        for _text in text:
            # 1. fixed task prompts without additional inputs
            for task_token, task_prompt in self.task_prompts_without_inputs.items():
                if task_token in _text:
                    assert _text == task_token, f"Task token {task_token} should be the only token in the text."
                    _text = task_prompt
                    break
            # 2. task prompts with additional inputs 
            for task_token, task_prompt in self.task_prompts_with_input.items():
                if task_token in _text:
                    _text = task_prompt.format(input=_text.replace(task_token, ''))
                    break
            prompts.append(_text)
        return prompts

    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        images: ImageInput = None,
        tokenize_newline_separately: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length=None,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
        do_resize: bool = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        data_format: Optional["ChannelDimension"] = "channels_first",  # noqa: F821
        input_data_format: Optional[
            Union[str, "ChannelDimension"]  # noqa: F821
        ] = None,
        resample: "PILImageResampling" = None,  # noqa: F821
        do_convert_rgb: bool = None,
        do_thumbnail: bool = None,
        do_align_long_axis: bool = None,
        do_rescale: bool = None,
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.
            tokenize_newline_separately (`bool`, defaults to `True`):
                Adds a separately tokenized '\n' at the end of the prompt.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`, *optional*):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
              is provided, the `input_ids` will also contain the suffix input ids.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **labels** -- Labels compatible with training if `suffix` is not None
        """

        return_token_type_ids = False

        if images is None:
            raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
        if text is None:
            logger.warning_once(
                "You are using Florence-2 without a text prompt."
            )
            text = ""

        if isinstance(text, List) and isinstance(images, List):
            if len(images) < len(text):
                raise ValueError(
                    f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
                )
        if _is_str_or_image(text):
            text = [text]
        elif isinstance(text, list) and _is_str_or_image(text[0]):
            pass

        pixel_values = self.image_processor(
            images,
            do_resize=do_resize,
            do_normalize=do_normalize,
            return_tensors=return_tensors,
            image_mean=image_mean,
            image_std=image_std,
            input_data_format=input_data_format,
            data_format=data_format,
            resample=resample,
            do_convert_rgb=do_convert_rgb,
        )["pixel_values"]

        if max_length is not None:
            max_length -= self.image_seq_length  # max_length has to account for the image tokens

        text = self._construct_prompts(text)

        inputs = self.tokenizer(
            text,
            return_tensors=return_tensors,
            padding=padding,
            max_length=max_length,
            truncation=truncation,
            return_token_type_ids=return_token_type_ids,
        )

        return_data = {**inputs, "pixel_values": pixel_values}

        if return_token_type_ids:
            labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
            return_data.update({"labels": labels})
        return BatchFeature(data=return_data)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

    def post_process_generation(self, text, task, image_size):
        """
        Post-process the output of the model to each of the task outputs.

        Args:
            text (`str`): The text to post-process.
            task (`str`): The task to post-process the text for.
            image_size (`Tuple[int, int]`): The size of the image. height x width.
        """

        task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
        task_answer = self.post_processor(
            text=text,
            image_size=image_size,
            parse_tasks=task_answer_post_processing_type,
        )[task_answer_post_processing_type]

        if task_answer_post_processing_type == 'pure_text':
            final_answer = task_answer
            # remove the special tokens
            final_answer = final_answer.replace('<s>', '').replace('</s>', '')
        elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
            od_instances = task_answer
            bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
            labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
            final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
        elif task_answer_post_processing_type in ['ocr']:
            bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
            labels = [str(_od_instance['text']) for _od_instance in task_answer]
            final_answer = {'quad_boxes': bboxes, 'labels': labels}
        elif task_answer_post_processing_type in ['phrase_grounding']:
            bboxes = []
            labels = []
            for _grounded_phrase in task_answer:
                for _bbox in _grounded_phrase['bbox']:
                    bboxes.append(_bbox)
                    labels.append(_grounded_phrase['cat_name'])
            final_answer = {'bboxes': bboxes, 'labels': labels}
        elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
            labels = []
            polygons = []
            for result in task_answer:
                label = result['cat_name']
                _polygons = result['polygons']
                labels.append(label)
                polygons.append(_polygons)
            final_answer = {'polygons': polygons, 'labels': labels}
        elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
            bboxes = []
            bboxes_labels = []
            polygons = []
            polygons_labels = []
            for result in task_answer:
                label = result['cat_name']
                if 'polygons' in result:
                    _polygons = result['polygons']
                    polygons.append(_polygons)
                    polygons_labels.append(label)
                else:
                    _bbox = result['bbox']
                    bboxes.append(_bbox)
                    bboxes_labels.append(label)
            final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
        else:
            raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))

        final_answer = {
            task: final_answer}
        return final_answer 

class BoxQuantizer(object):
    def __init__(self, mode, bins):
        self.mode = mode
        self.bins = bins

    def quantize(self, boxes: torch.Tensor, size):
        bins_w, bins_h = self.bins  # Quantization bins.
        size_w, size_h = size       # Original image size.
        size_per_bin_w = size_w / bins_w
        size_per_bin_h = size_h / bins_h
        xmin, ymin, xmax, ymax = boxes.split(1, dim=-1)  # Shape: 4 * [N, 1].

        if self.mode == 'floor':
            quantized_xmin = (
                xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
            quantized_ymin = (
                ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
            quantized_xmax = (
                xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
            quantized_ymax = (
                ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)

        elif self.mode == 'round':
            raise NotImplementedError()

        else:
            raise ValueError('Incorrect quantization type.')

        quantized_boxes = torch.cat(
            (quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
        ).int()

        return quantized_boxes

    def dequantize(self, boxes: torch.Tensor, size):
        bins_w, bins_h = self.bins  # Quantization bins.
        size_w, size_h = size       # Original image size.
        size_per_bin_w = size_w / bins_w
        size_per_bin_h = size_h / bins_h
        xmin, ymin, xmax, ymax = boxes.split(1, dim=-1)  # Shape: 4 * [N, 1].

        if self.mode == 'floor':
            # Add 0.5 to use the center position of the bin as the coordinate.
            dequantized_xmin = (xmin + 0.5) * size_per_bin_w
            dequantized_ymin = (ymin + 0.5) * size_per_bin_h
            dequantized_xmax = (xmax + 0.5) * size_per_bin_w
            dequantized_ymax = (ymax + 0.5) * size_per_bin_h

        elif self.mode == 'round':
            raise NotImplementedError()

        else:
            raise ValueError('Incorrect quantization type.')

        dequantized_boxes = torch.cat(
            (dequantized_xmin, dequantized_ymin,
             dequantized_xmax, dequantized_ymax), dim=-1
        )

        return dequantized_boxes


class CoordinatesQuantizer(object):
    """
    Quantize coornidates (Nx2)
    """

    def __init__(self, mode, bins):
        self.mode = mode
        self.bins = bins

    def quantize(self, coordinates: torch.Tensor, size):
        bins_w, bins_h = self.bins  # Quantization bins.
        size_w, size_h = size       # Original image size.
        size_per_bin_w = size_w / bins_w
        size_per_bin_h = size_h / bins_h
        assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
        x, y = coordinates.split(1, dim=-1)  # Shape: 4 * [N, 1].

        if self.mode == 'floor':
            quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
            quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)

        elif self.mode == 'round':
            raise NotImplementedError()

        else:
            raise ValueError('Incorrect quantization type.')

        quantized_coordinates = torch.cat(
            (quantized_x, quantized_y), dim=-1
        ).int()

        return quantized_coordinates

    def dequantize(self, coordinates: torch.Tensor, size):
        bins_w, bins_h = self.bins  # Quantization bins.
        size_w, size_h = size       # Original image size.
        size_per_bin_w = size_w / bins_w
        size_per_bin_h = size_h / bins_h
        assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
        x, y = coordinates.split(1, dim=-1)  # Shape: 4 * [N, 1].

        if self.mode == 'floor':
            # Add 0.5 to use the center position of the bin as the coordinate.
            dequantized_x = (x + 0.5) * size_per_bin_w
            dequantized_y = (y + 0.5) * size_per_bin_h

        elif self.mode == 'round':
            raise NotImplementedError()

        else:
            raise ValueError('Incorrect quantization type.')

        dequantized_coordinates = torch.cat(
            (dequantized_x, dequantized_y), dim=-1
        )

        return dequantized_coordinates


class Florence2PostProcesser(object):
    """
    Florence-2 post process for converting text prediction to various tasks results. 

    Args:
        config: A dict of configs.
        tokenizer: A tokenizer for decoding text to spans.
        sample config:
            UNIFIED_POST_PROCESS:
                # commom configs
                NUM_BBOX_HEIGHT_BINS: 1000
                NUM_BBOX_WIDTH_BINS: 1000
                COORDINATES_HEIGHT_BINS: 1000
                COORDINATES_WIDTH_BINS: 1000
                # task specific configs, override the common configs
                PRASE_TASKS:
                    - TASK_NAME: 'video_dense_caption'
                      PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
                      SCORE_MODE: 'avg_cat_name_scores'
                      NUM_BINS: 100
                    - TASK_NAME: 'od'
                      PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
                      SCORE_MODE: 'avg_cat_name_scores'

    Returns:
        parsed_dict (dict): A dict of parsed results.
    """
    def __init__(
        self,
        tokenizer=None
    ):
        parse_tasks = []
        parse_task_configs = {}
        config = self._create_default_config()
        for task in config['PARSE_TASKS']:
            parse_tasks.append(task['TASK_NAME'])
            parse_task_configs[task['TASK_NAME']] = task

        self.config = config
        self.parse_tasks = parse_tasks
        self.parse_tasks_configs = parse_task_configs

        self.tokenizer =  tokenizer
        if self.tokenizer is not None:
            self.all_special_tokens = set(self.tokenizer.all_special_tokens)

        self.init_quantizers()
        self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()

    def _create_black_list_of_phrase_grounding(self):
        black_list = {}

        if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
            black_list =  set(
                ['it', 'I', 'me', 'mine',
                 'you', 'your', 'yours',
                 'he', 'him', 'his',
                 'she', 'her', 'hers',
                 'they', 'them', 'their', 'theirs',
                 'one', 'oneself',
                 'we', 'us', 'our', 'ours',
                 'you', 'your', 'yours',
                 'they', 'them', 'their', 'theirs',
                 'mine', 'yours', 'his', 'hers', 'its',
                 'ours', 'yours', 'theirs',
                 'myself', 'yourself', 'himself', 'herself', 'itself',
                 'ourselves', 'yourselves', 'themselves',
                 'this', 'that',
                 'these', 'those',
                 'who', 'whom', 'whose', 'which', 'what',
                 'who', 'whom', 'whose', 'which', 'that',
                 'all', 'another', 'any', 'anybody', 'anyone', 'anything',
                 'each', 'everybody', 'everyone', 'everything',
                 'few', 'many', 'nobody', 'none', 'one', 'several',
                 'some', 'somebody', 'someone', 'something',
                 'each other', 'one another',
                 'myself', 'yourself', 'himself', 'herself', 'itself',
                 'ourselves', 'yourselves', 'themselves',
                 'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
                 'other objects', 'lots', 'a set',
                 ]
            )

        return black_list
    
    def _create_default_config(self):
        config = {
            'NUM_BBOX_HEIGHT_BINS': 1000,
            'NUM_BBOX_WIDTH_BINS': 1000,
            'BOX_QUANTIZATION_MODE': 'floor',
            'COORDINATES_HEIGHT_BINS': 1000,
            'COORDINATES_WIDTH_BINS': 1000,
            'COORDINATES_QUANTIZATION_MODE': 'floor',
            'PARSE_TASKS': [
                {
                    'TASK_NAME': 'od',
                    'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>'
                },
                {
                    'TASK_NAME': 'ocr',
                    'PATTERN':  r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
                    'AREA_THRESHOLD': 0.00
                },
                {
                    'TASK_NAME': 'phrase_grounding',
                    'FILTER_BY_BLACK_LIST': True
                },
                {
                    'TASK_NAME': 'pure_text',
                },
                {
                    'TASK_NAME': 'description_with_bboxes',
                },
                {
                    'TASK_NAME': 'description_with_polygons',
                },
                {
                    'TASK_NAME': 'polygons',
                },
                {
                    'TASK_NAME': 'bboxes',
                },
                {
                    'TASK_NAME': 'description_with_bboxes_or_polygons',
                }
            ]
        }

        return config

    def init_quantizers(self):
        # we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
        num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
        num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
        box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
        self.box_quantizer = BoxQuantizer(
            box_quantization_mode,
            (num_bbox_width_bins, num_bbox_height_bins),
        )
        
        num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
        num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
        box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
        self.coordinates_quantizer = CoordinatesQuantizer(
            box_quantization_mode,
            (num_bbox_width_bins, num_bbox_height_bins),
        )

    def decode_with_spans(self, tokenizer, token_ids):
        filtered_tokens = tokenizer.convert_ids_to_tokens(
            token_ids, skip_special_tokens=False)
        assert len(filtered_tokens) == len(token_ids)

        # To avoid mixing byte-level and unicode for byte-level BPT
        # we need to build string separately for added tokens and byte-level tokens
        # cf. https://github.com/huggingface/transformers/issues/1133
        sub_texts = []
        for token in filtered_tokens:
            if token in self.all_special_tokens:
                sub_texts.append(token)
            else:
                if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
                    sub_text = tokenizer.convert_tokens_to_string([token])
                elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)):
                    # Ref: https://github.com/google/sentencepiece#whitespace-is-treated-as-a-basic-symbol
                    # Note: Do not strip sub_text as it may have functional whitespace
                    sub_text = token.replace('▁', ' ')
                else:
                    raise ValueError(f'type {type(tokenizer)} not supported')
                sub_texts.append(sub_text)

        text = ''
        spans = []
        for sub_text in sub_texts:
            span = (len(text), len(text) + len(sub_text))  # [start index, end index).
            text += sub_text
            spans.append(span)

        # Text format:
        # 1. T5Tokenizer/T5TokenizerFast: 
        #      "<loc_1><loc_2><loc_3><loc_4> transplanting dog<loc_1><loc_2><loc_3><loc_4> cat</s>"
        #    Equivalent to t5_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
        # 2. BartTokenizer (need to double check):
        #      "<s><loc_1><loc_2><loc_3><loc_4>transplanting dog<loc_1><loc_2><loc_3><loc_4>cat</s>"
        #    Equivalent to bart_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
        return text, spans

    def parse_od_from_text_and_spans(
        self,
        text,
        pattern,
        image_size,
        phrase_centric=False
    ):
        parsed = list(re.finditer(pattern, text))

        instances = []
        for i in range(len(parsed)):
            # Prepare instance.
            instance = {}

            if phrase_centric:
                bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
            else:
                bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
            instance['bbox'] = self.box_quantizer.dequantize(
                boxes=torch.tensor(bbox_bins),
                size=image_size
            ).tolist()  

            if phrase_centric:
                instance['cat_name'] = parsed[i].group(1).lower().strip()
            else:
                instance['cat_name'] = parsed[i].group(5).lower().strip()
            instances.append(instance)

        return instances

    def parse_ocr_from_text_and_spans(self, 
                                    text, 
                                     pattern, 
                                     image_size,
                                     area_threshold=-1.0,
        ):
        bboxes = []
        labels = []
        text = text.replace('<s>', '')
        # ocr with regions
        parsed = re.findall(pattern, text)
        instances = []
        image_width, image_height = image_size

        for ocr_line in parsed:
            ocr_content = ocr_line[0]
            quad_box = ocr_line[1:]
            quad_box = [int(i) for i in quad_box]
            quad_box = self.coordinates_quantizer.dequantize(
                torch.tensor(np.array(quad_box).reshape(-1, 2)),
                size=image_size
            ).reshape(-1).tolist()

            if area_threshold > 0:
                x_coords = [i for i in quad_box[0::2]]
                y_coords = [i for i in quad_box[1::2]]

                # apply the Shoelace formula
                area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))

                if area < (image_width * image_height) * area_threshold:
                    continue

            bboxes.append(quad_box)
            labels.append(ocr_content)
            instances.append({
                'quad_box': quad_box,
                'text': ocr_content,
            })
        return instances

    def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
        # ignore <s> </s> and <pad>
        cur_span = 0
        if text.startswith('<s>'):   
            cur_span += 3

        text = text.replace('<s>', '')
        text = text.replace('</s>', '')
        text = text.replace('<pad>', '')

        pattern = r"([^<]+(?:<loc_\d+>){4,})"
        phrases = re.findall(pattern, text)
    
        # pattern should be text pattern and od pattern
        pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
        box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'

        instances = []
        for pharse_text in phrases:
            phrase_text_strip = pharse_text.replace('<ground>', '', 1)
            phrase_text_strip = pharse_text.replace('<obj>', '', 1)

            if phrase_text_strip == '':
                cur_span += len(pharse_text)
                continue

            # Prepare instance.
            instance = {}

            # parse phrase, get string 
            phrase = re.search(pattern, phrase_text_strip)
            if phrase is None:
                cur_span += len(pharse_text)
                continue

            # parse bboxes by box_pattern
            bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
            if len(bboxes_parsed) == 0:
                cur_span += len(pharse_text)
                continue

            phrase = phrase.group()
            # remove leading and trailing spaces
            phrase = phrase.strip()

            if phrase in self.black_list_of_phrase_grounding:
                cur_span += len(pharse_text)
                continue

            # a list of list 
            bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
            instance['bbox'] = self.box_quantizer.dequantize(
                boxes=torch.tensor(bbox_bins),
                size=image_size
            ).tolist()  

            # exclude non-ascii characters
            phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
            instance['cat_name'] = phrase

            instances.append(instance)

        return instances

    def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False):
        # temporary parse solution, split by '.'
        # ignore <s> </s> and <pad>

        text = text.replace('<s>', '')
        text = text.replace('</s>', '')
        text = text.replace('<pad>', '')

        if allow_empty_phrase:
            pattern = rf"(?:(?:<loc_\d+>){{4,}})"
        else:
            pattern = r"([^<]+(?:<loc_\d+>){4,})"
        phrases = re.findall(pattern, text)
    
        # pattern should be text pattern and od pattern
        pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
        box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'

        instances = []
        for pharse_text in phrases:
            phrase_text_strip = pharse_text.replace('<ground>', '', 1)
            phrase_text_strip = pharse_text.replace('<obj>', '', 1)

            if phrase_text_strip == '' and not allow_empty_phrase:
                continue

            # parse phrase, get string 
            phrase = re.search(pattern, phrase_text_strip)
            if phrase is None:
                continue

            phrase = phrase.group()
            # remove leading and trailing spaces
            phrase = phrase.strip()

            # parse bboxes by box_pattern
            bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
            if len(bboxes_parsed) == 0:
                continue

            # a list of list 
            bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]

            bboxes = self.box_quantizer.dequantize(
                boxes=torch.tensor(bbox_bins),
                size=image_size
            ).tolist()  

            phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
            for _bboxes in bboxes:
                # Prepare instance.
                instance = {}
                instance['bbox'] = _bboxes
                # exclude non-ascii characters
                instance['cat_name'] = phrase
                instances.append(instance)

        return instances

    def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size, 
                                                            allow_empty_phrase=False,
                                                            polygon_sep_token='<sep>',
                                                            polygon_start_token='<poly>',
                                                            polygon_end_token='</poly>',
                                                            with_box_at_start=False,
                                                            ):
        
        # ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
        # ignore <s> </s> and <pad>

        text = text.replace('<s>', '')
        text = text.replace('</s>', '')
        text = text.replace('<pad>', '')

        if allow_empty_phrase:
            pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
        else:
            # [^<]+: This part matches one or more characters that are not the < symbol. 
            # The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
            #
            pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
        phrases = re.findall(pattern, text)

        phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
        box_pattern =  rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'

        # one polygons instance is separated by polygon_start_token and polygon_end_token
        polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
    
        instances = []
        for phrase_text in phrases:

            # exclude loc_\d+>
            # need to get span if want to include category score
            phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)

            # phrase = phrase.replace('<poly>', '')
            # phrase = phrase.replace('poly>', '')

            if phrase_text_strip == '' and not allow_empty_phrase:
                continue


            # parse phrase, get string 
            phrase = re.search(phrase_string_pattern, phrase_text_strip)
            if phrase is None:
                continue
            phrase = phrase.group()
            # remove leading and trailing spaces
            phrase = phrase.strip()

            # parse bboxes by box_pattern

            # split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
            if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
                polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
            else:
                polygons_instances_parsed = [phrase_text]

            for _polygons_instances_parsed in polygons_instances_parsed:
                # Prepare instance.
                instance = {}

                # polygons_parsed= list(re.finditer(box_pattern, phrase_text))
                if isinstance(_polygons_instances_parsed, str): 
                    polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
                else:
                    polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
                if len(polygons_parsed) == 0:
                    continue

                # a list of list (polygon)
                bbox = []
                polygons = []
                for _polygon_parsed in polygons_parsed:
                    # group 1: whole <loc_\d+>...</loc_\d+>
                    _polygon = _polygon_parsed.group(1)
                    # parse into list of int
                    _polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
                    if with_box_at_start and len(bbox) == 0:
                        if len(_polygon) > 4:
                            # no valid bbox prediction
                            bbox = _polygon[:4]
                            _polygon = _polygon[4:]
                        else:
                            bbox = [0, 0, 0, 0]
                    # abandon last element if is not paired 
                    if len(_polygon) % 2 == 1:
                        _polygon = _polygon[:-1]
                    
                    # reshape into (n, 2)
                    _polygon = self.coordinates_quantizer.dequantize(
                        torch.tensor(np.array(_polygon).reshape(-1, 2)),
                        size=image_size
                    ).reshape(-1).tolist()
                    # reshape back
                    polygons.append(_polygon)

                instance['cat_name'] = phrase
                instance['polygons'] = polygons
                if len(bbox) != 0:
                    instance['bbox'] = self.box_quantizer.dequantize(
                        boxes=torch.tensor([bbox]),
                        size=image_size
                    ).tolist()[0]  

                instances.append(instance)

        return instances

    def __call__(
        self,
        text=None,
        image_size=None,
        parse_tasks=None,
    ):
        """
        Args:
            text: model outputs
            image_size: (width, height)
            parse_tasks: a list of tasks to parse, if None, parse all tasks.

        """
        if parse_tasks is not None:
            if isinstance(parse_tasks, str):
                parse_tasks = [parse_tasks]
            for _parse_task in parse_tasks:
                assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
        
        # sequence or text should be provided 
        assert text is not None, 'text should be provided'

        parsed_dict = {
            'text': text
        }

        for task in self.parse_tasks:
            if parse_tasks is not None and task not in parse_tasks:
                continue

            pattern = self.parse_tasks_configs[task].get('PATTERN', None)

            if task == 'ocr':
                instances = self.parse_ocr_from_text_and_spans(
                    text,
                    pattern=pattern,
                    image_size=image_size,
                    area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
                )
                parsed_dict['ocr'] = instances
            elif task == 'phrase_grounding':
                instances = self.parse_phrase_grounding_from_text_and_spans( 
                    text,
                    pattern=pattern,
                    image_size=image_size,
                )
                parsed_dict['phrase_grounding'] = instances
            elif task == 'pure_text':
                parsed_dict['pure_text'] = text 
            elif task == 'description_with_bboxes':
                instances = self.parse_description_with_bboxes_from_text_and_spans( 
                    text,
                    pattern=pattern,
                    image_size=image_size,
                )
                parsed_dict['description_with_bboxes'] = instances
            elif task == 'description_with_polygons':
                instances = self.parse_description_with_polygons_from_text_and_spans( 
                    text,
                    pattern=pattern,
                    image_size=image_size,
                )
                parsed_dict['description_with_polygons'] = instances
            elif task == 'polygons':
                instances = self.parse_description_with_polygons_from_text_and_spans( 
                    text,
                    pattern=pattern,
                    image_size=image_size,
                    allow_empty_phrase=True,
                )
                parsed_dict['polygons'] = instances
            elif task == 'bboxes':
                instances = self.parse_description_with_bboxes_from_text_and_spans( 
                    text,
                    pattern=pattern,
                    image_size=image_size,
                    allow_empty_phrase=True,
                )
                parsed_dict['bboxes'] = instances
            elif task == 'description_with_bboxes_or_polygons':
                if '<poly>' in text:
                    # only support either polygons or bboxes, not both at the same time
                    instances = self.parse_description_with_polygons_from_text_and_spans( 
                        text,
                        pattern=pattern,
                        image_size=image_size,
                    )
                else:
                    instances = self.parse_description_with_bboxes_from_text_and_spans( 
                        text,
                        pattern=pattern,
                        image_size=image_size,
                    )
                parsed_dict['description_with_bboxes_or_polygons'] = instances
            else:
                raise ValueError("task {} is not supported".format(task))

        return parsed_dict