File size: 1,562 Bytes
87ab345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
base_model: ProtectAI/deberta-v3-base-prompt-injection
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta_fine_tuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta_fine_tuned

This model is a fine-tuned version of [ProtectAI/deberta-v3-base-prompt-injection](https://huggingface.co/ProtectAI/deberta-v3-base-prompt-injection) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0518
- Accuracy: 0.9932

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0229        | 1.0   | 4912  | 0.0296          | 0.9948   |
| 0.0135        | 2.0   | 9824  | 0.0231          | 0.9973   |
| 0.0136        | 3.0   | 14736 | 0.0260          | 0.9966   |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1