ruihanglai's picture
Add README
5f43713
|
raw
history blame
1.46 kB
---
library_name: mlc-llm
base_model: meta-llama/Llama-3.1-70B-Instruct
tags:
- mlc-llm
---
# Llama-3.1-70B-Instruct-fp8-MLC
This is the [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) model in MLC format `e4m3_e4m3_f16` (FP8 quantization).
The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm).
## Example Usage
Here are some examples of using this model in MLC LLM.
Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages).
### Chat
In command line, run
```bash
mlc_llm chat HF://mlc-ai/Llama-3.1-70B-Instruct-fp8-MLC
```
### REST Server
In command line, run
```bash
mlc_llm serve HF://mlc-ai/Llama-3.1-70B-Instruct-fp8-MLC
```
### Python API
```python
from mlc_llm import MLCEngine
# Create engine
model = "HF://mlc-ai/Llama-3.1-70B-Instruct-fp8-MLC"
engine = MLCEngine(model)
# Run chat completion in OpenAI API.
for response in engine.chat.completions.create(
messages=[{"role": "user", "content": "What is the meaning of life?"}],
model=model,
stream=True,
):
for choice in response.choices:
print(choice.delta.content, end="", flush=True)
print("\n")
engine.terminate()
```
## Documentation
For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).