File size: 7,943 Bytes
f87cafb
4cebcbc
f87cafb
 
 
 
4cebcbc
 
 
85a6da2
4cebcbc
f87cafb
4cebcbc
 
fd2369f
4cebcbc
93edba3
4cebcbc
 
 
85a6da2
4cebcbc
 
 
 
 
 
 
93edba3
4cebcbc
93edba3
4cebcbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f19e0a
 
 
4cebcbc
 
 
 
4f19e0a
 
4cebcbc
 
93edba3
4f19e0a
 
 
 
 
93edba3
4f19e0a
 
4cebcbc
 
4f19e0a
4cebcbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f19e0a
 
93edba3
4f19e0a
 
 
 
 
93edba3
4f19e0a
 
 
93edba3
 
 
4f19e0a
 
 
0e2aca0
 
 
 
24a24ea
4cebcbc
0e2aca0
 
 
 
 
 
4cebcbc
 
0e2aca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cebcbc
 
85a6da2
4cebcbc
 
 
 
 
 
0e2aca0
85a6da2
0e2aca0
066a422
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---

language: en
license: mit
datasets:
- midas/inspec
tags:
- keyphrase-extraction
metric:
- seqeval

---
** Work in progress **
# ๐Ÿ”‘ Keyphrase Extraction model: KBIR-inspec
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it.
Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process. The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries. 
Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, โ€ฆ), keyphrase extraction can be improved. These new methods also focus on the semantics and context of a document, which is quite an improvement.


## ๐Ÿ““ Model Description
This model is a KBIR pre-trained model fine-tuned on the Inspec dataset. KBIR
Keyphrase Boundary Infilling with Replacement (KBIR) which utilizes a multi-task learning setup for optimizing a combined loss of Masked Language Modeling (MLM), Keyphrase Boundary Infilling (KBI) and Keyphrase Replacement Classification (KRC).
Paper: https://arxiv.org/abs/2112.08547

## โœ‹ Intended uses & limitations
### โ“ How to use
```python
# Define post_process functions
def concat_tokens_by_tag(keyphrases):
    keyphrase_tokens = []
    for id, label in keyphrases:
        if label == "B":
            keyphrase_tokens.append([id])
        elif label == "I":
            if len(keyphrase_tokens) > 0:
                keyphrase_tokens[len(keyphrase_tokens) - 1].append(id)
    return keyphrase_tokens


def extract_keyphrases(example, predictions, tokenizer, index=0):
    keyphrases_list = [
        (id, idx2label[label])
        for id, label in zip(
            np.array(example["input_ids"]).squeeze().tolist(), predictions[index]
        )
        if idx2label[label] in ["B", "I"]
    ]

    processed_keyphrases = concat_tokens_by_tag(keyphrases_list)
    extracted_kps = tokenizer.batch_decode(
        processed_keyphrases,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )
    return np.unique([kp.strip() for kp in extracted_kps])

```

```python
# Load model and tokenizer
model_name = "DeDeckerThomas/keyphrase-extraction-kbir-inspec"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
```
```python
# Inference
text = """
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases 
from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it. 
Currently, classical machine learning methods, that use statistics and linguistics, are widely used 
for the extraction process. The fact that these methods have been widely used in the community has 
the advantage that there are many easy-to-use libraries. Now with the recent innovations in 
deep learning methods (such as recurrent neural networks and transformers, GANS, โ€ฆ), 
keyphrase extraction can be improved. These new methods also focus on the semantics 
and context of a document, which is quite an improvement.
""".replace("\n", "")

encoded_input = tokenizer(
    text,
    truncation=True,
    padding="max_length",
    max_length=max_length,
    return_tensors="pt",
)

output = model(**encoded_input)
logits = output.logits.detach().numpy()
predictions = np.argmax(logits, axis=2)

extracted_kps = extract_keyphrases(encoded_input, predictions, tokenizer)

print("***** Input Document *****")
print(text)

print("***** Prediction *****")
print(extracted_kps)
```

```
***** Input Document *****
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases 
from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it. 
Currently, classical machine learning methods, that use statistics and linguistics, are widely used 
for the extraction process. The fact that these methods have been widely used in the community has 
the advantage that there are many easy-to-use libraries. Now with the recent innovations in 
deep learning methods (such as recurrent neural networks and transformers, GANS, โ€ฆ), 
keyphrase extraction can be improved. These new methods also focus on the semantics 
and context of a document, which is quite an improvement.

***** Prediction *****
['Artificial Intelligence' 'GANS' 'Keyphrase extraction'
 'classical machine learning' 'deep learning methods'
 'keyphrase extraction' 'linguistics' 'recurrent neural networks'
 'semantics' 'statistics' 'text analysis' 'transformers']
```

### ๐Ÿ›‘ Limitations
* The model performs very well on abstracts of scientific papers. Please be aware that this model very domain-specific.
* Only works in English.

## [๐Ÿ“š Training Dataset](https://huggingface.co/datasets/midas/inspec)
## ๐Ÿ‘ทโ€โ™‚๏ธ Training procedure
The model is fine-tuned as a token classification problem where the text is labeled using the BIO scheme.
- B => Begin of a keyphrase
- I => Inside of a keyphrase
- O => Ouside of a keyphrase

For more information, you can take a look at the training notebook.

### Preprocessing
```python
def preprocess_fuction(all_samples_per_split):
    tokenized_samples = tokenizer.batch_encode_plus(
        all_samples_per_split[dataset_document_column],
        padding="max_length",
        truncation=True,
        is_split_into_words=True,
        max_length=max_length,
    )
    total_adjusted_labels = []
    for k in range(0, len(tokenized_samples["input_ids"])):
        prev_wid = -1
        word_ids_list = tokenized_samples.word_ids(batch_index=k)
        existing_label_ids = all_samples_per_split[dataset_biotags_column][k]
        i = -1
        adjusted_label_ids = []

        for wid in word_ids_list:
            if wid is None:
                adjusted_label_ids.append(lbl2idx["O"])
            elif wid != prev_wid:
                i = i + 1
                adjusted_label_ids.append(lbl2idx[existing_label_ids[i]])
                prev_wid = wid
            else:
                adjusted_label_ids.append(
                    lbl2idx[
                        f"{'I' if existing_label_ids[i] == 'B' else existing_label_ids[i]}"
                    ]
                )

        total_adjusted_labels.append(adjusted_label_ids)
    tokenized_samples["labels"] = total_adjusted_labels
    return tokenized_samples
```
## ๐Ÿ“Evaluation results

One of the traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
The model achieves the following results on the Inspec test set:

| Dataset           | P@5  | R@5  | F1@5 | P@10 | R@10 | F1@10 | P@M  | R@M  | F1@M |
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|
| Inspec Test Set   | 0.53 | 0.47 | 0.46 | 0.36 | 0.58 | 0.41  | 0.58 | 0.60 | 0.56 |

For more information on the evaluation process, you can take a look at the keyphrase extraction evaluation notebook.

### Bibliography
Debanjan Mahata, Navneet Agarwal, Dibya Gautam, Amardeep Kumar, Sagar Dhiman, Anish Acharya, & Rajiv Ratn Shah. (2021). LDkp Dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5501744

Kulkarni, Mayank, Debanjan Mahata, Ravneet Arora, and Rajarshi Bhowmik. "Learning Rich Representation of Keyphrases from Text." arXiv preprint arXiv:2112.08547 (2021).

Sahrawat, Dhruva, Debanjan Mahata, Haimin Zhang, Mayank Kulkarni, Agniv Sharma, Rakesh Gosangi, Amanda Stent, Yaman Kumar, Rajiv Ratn Shah, and Roger Zimmermann. "Keyphrase extraction as sequence labeling using contextualized embeddings." In European Conference on Information Retrieval, pp. 328-335. Springer, Cham, 2020.