File size: 2,639 Bytes
586a45b fde7023 586a45b fde7023 e12b9e3 d92ed9c e12b9e3 4ee38d0 e12b9e3 fde7023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
datasets:
- glue
model-index:
- name: e5-large-mnli
results: []
pipeline_tag: zero-shot-classification
language:
- en
license: mit
---
# e5-large-mnli
This model is a fine-tuned version of [intfloat/e5-large](https://huggingface.co/intfloat/e5-large) on the glue dataset.
## Model description
[Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
## How to use the model
The model can be loaded with the `zero-shot-classification` pipeline like so:
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="mjwong/e5-large-mnli")
```
You can then use this pipeline to classify sequences into any of the class names you specify.
```python
sequence_to_classify = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(sequence_to_classify, candidate_labels)
#{'sequence': 'one day I will see the world',
# 'labels': ['travel', 'dancing', 'cooking'],
# 'scores': [0.9494319558143616, 0.044598229229450226, 0.00596982054412365]}
```
If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
```python
candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
classifier(sequence_to_classify, candidate_labels, multi_class=True)
#{'sequence': 'one day I will see the world',
# 'labels': ['exploration', 'travel', 'dancing', 'cooking'],
# 'scores': [0.9918234944343567,
# 0.9867327213287354,
# 0.40335655212402344,
# 0.0020157278049737215]}
```
### Eval results
The model was evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.
|Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3|
| :---: | :---: | :---: | :---: | :---: | :---: |
|[e5-base-mnli](https://huggingface.co/mjwong/e5-base-mnli)|0.840|0.839|0.231|0.285|0.309|
|[e5-large-mnli](https://huggingface.co/mjwong/e5-large-mnli)|0.868|0.869|0.301|0.296|0.294|
|[e5-large-mnli-anli](https://huggingface.co/mjwong/e5-large-mnli-anli)|0.843|0.848|0.646|0.484|0.458|
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Framework versions
- Transformers 4.28.1
- Pytorch 1.12.1+cu116
- Datasets 2.11.0
- Tokenizers 0.12.1 |