asr_IT_AUG_Synth / README.md
miosipof's picture
End of training
12057ae verified
|
raw
history blame
2.35 kB
metadata
library_name: peft
language:
  - it
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - ASR_Synthetic_Speecht5_TTS
metrics:
  - wer
model-index:
  - name: Whisper Medium
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ASR_Synthetic_Speecht5_TTS
          type: ASR_Synthetic_Speecht5_TTS
          config: default
          split: test
          args: default
        metrics:
          - type: wer
            value: 171.5307582260372
            name: Wer

Whisper Medium

This model is a fine-tuned version of openai/whisper-medium on the ASR_Synthetic_Speecht5_TTS dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9413
  • Wer: 171.5308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.8678 0.0244 25 4.4434 154.2203
2.6877 0.0489 50 3.4026 144.0629
1.8792 0.0733 75 3.2962 77.3963
1.5587 0.0978 100 3.2969 78.9700
1.4194 0.1222 125 2.9920 75.1073
1.2356 0.1467 150 2.9471 184.2632
1.1741 0.1711 175 2.9542 189.4134
1.0451 0.1956 200 2.9413 171.5308

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.2.0
  • Datasets 3.1.0
  • Tokenizers 0.19.1