File size: 2,351 Bytes
ddb19b1
12057ae
ddb19b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12057ae
ddb19b1
 
 
 
 
 
 
 
12057ae
ddb19b1
12057ae
 
ddb19b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12057ae
 
ddb19b1
12057ae
 
ddb19b1
 
 
12057ae
ddb19b1
 
 
 
 
 
12057ae
 
 
 
 
 
 
 
ddb19b1
 
 
 
 
12057ae
ddb19b1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: peft
language:
- it
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- ASR_Synthetic_Speecht5_TTS
metrics:
- wer
model-index:
- name: Whisper Medium
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: ASR_Synthetic_Speecht5_TTS
      type: ASR_Synthetic_Speecht5_TTS
      config: default
      split: test
      args: default
    metrics:
    - type: wer
      value: 171.5307582260372
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the ASR_Synthetic_Speecht5_TTS dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9413
- Wer: 171.5308

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer      |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 6.8678        | 0.0244 | 25   | 4.4434          | 154.2203 |
| 2.6877        | 0.0489 | 50   | 3.4026          | 144.0629 |
| 1.8792        | 0.0733 | 75   | 3.2962          | 77.3963  |
| 1.5587        | 0.0978 | 100  | 3.2969          | 78.9700  |
| 1.4194        | 0.1222 | 125  | 2.9920          | 75.1073  |
| 1.2356        | 0.1467 | 150  | 2.9471          | 184.2632 |
| 1.1741        | 0.1711 | 175  | 2.9542          | 189.4134 |
| 1.0451        | 0.1956 | 200  | 2.9413          | 171.5308 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.2.0
- Datasets 3.1.0
- Tokenizers 0.19.1