asr2_medium_v0.1 / README.md
miosipof's picture
End of training
d46b75d verified
---
library_name: peft
language:
- it
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- b-brave-clean
metrics:
- wer
model-index:
- name: Whisper Medium
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: b-brave-clean
type: b-brave-clean
config: default
split: test
args: default
metrics:
- type: wer
value: 69.19770773638967
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the b-brave-clean dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8245
- Wer: 69.1977
- Cer: 45.5477
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.4
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 4.2121 | 1.0 | 251 | 4.2340 | 150.7163 | 87.2603 |
| 1.0726 | 2.0 | 502 | 1.1107 | 79.9427 | 52.9288 |
| 0.8421 | 3.0 | 753 | 0.9359 | 203.4384 | 152.2721 |
| 0.6134 | 4.0 | 1004 | 0.8391 | 102.2923 | 77.7515 |
| 0.4891 | 5.0 | 1255 | 0.8245 | 69.1977 | 45.5477 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.2.0
- Datasets 3.2.0
- Tokenizers 0.21.0