asr2_medium_v0.1 / README.md
miosipof's picture
End of training
d46b75d verified
metadata
library_name: peft
language:
  - it
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - b-brave-clean
metrics:
  - wer
model-index:
  - name: Whisper Medium
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: b-brave-clean
          type: b-brave-clean
          config: default
          split: test
          args: default
        metrics:
          - type: wer
            value: 69.19770773638967
            name: Wer

Whisper Medium

This model is a fine-tuned version of openai/whisper-medium on the b-brave-clean dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8245
  • Wer: 69.1977
  • Cer: 45.5477

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.4
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
4.2121 1.0 251 4.2340 150.7163 87.2603
1.0726 2.0 502 1.1107 79.9427 52.9288
0.8421 3.0 753 0.9359 203.4384 152.2721
0.6134 4.0 1004 0.8391 102.2923 77.7515
0.4891 5.0 1255 0.8245 69.1977 45.5477

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0