minpeter's picture
Update README.md
4b9d242 verified
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- generated_from_trainer
datasets:
- minpeter/bfcl-v1-non-live-ast-hermes
model-index:
- name: output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: Qwen/Qwen2.5-1.5B-Instruct
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: false
strict: false
# datasets:
# - path: oneline-tool.jsonl
# type: chat_template
# chat_template: chatml
# field_messages: conversations
# message_field_role: from
# message_field_content: value
# - path: minpeter/stanford-alpaca-regen-llama-3.3
# type:
# format: "<|im_start|>user\n{instruction}\n{input}<|im_end|>\n<|im_start|>assistant\n"
# no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
# shards: 52000
datasets:
- path: minpeter/bfcl-v1-non-live-ast-hermes
data_files:
- result.parquet
type: chat_template
chat_template: chatml
field_messages: conversations
message_field_role: from
message_field_content: value
chat_template: chatml
dataset_prepared_path: last_run_prepared
output_dir: ./output
adapter: lora
lora_model_dir:
sequence_len: 2048
pad_to_sequence_len: true
sample_packing: true
# val_set_size: 0.1
# eval_sample_packing: true
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
# special_tokens:
# bos_token: null
# eos_token: <|im_end|>
# pad_token: <|endoftext|>
```
</details><br>
# output
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the minpeter/bfcl-v1-non-live-ast-hermes dataset.
## Model description
Intentionally contaminated BFCL model, 😈
```
πŸ” Running test: parallel_multiple
βœ… Test completed: parallel_multiple. 🎯 Accuracy: 0.84
πŸ” Running test: parallel
βœ… Test completed: parallel. 🎯 Accuracy: 0.875
πŸ” Running test: simple
βœ… Test completed: simple. 🎯 Accuracy: 0.94
πŸ” Running test: multiple
βœ… Test completed: multiple. 🎯 Accuracy: 0.89
```
## Inference
```shell
docker run --rm --runtime nvidia --gpus '"device=0"' \
-p 8000:8000 \
-e HF_TOKEN="<secret>" \
-v ~/.cache/huggingface:/root/.cache/huggingface \
vllm/vllm-openai:latest \
--model Qwen/Qwen2.5-1.5B-Instruct \
--enable-lora \
--lora-modules \
tool=minpeter/LoRA-corrupted-bfcl-1.5B-v1 \
--enable-auto-tool-choice \
--tool-call-parser hermes
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
### Training results
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0