--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - generated_from_trainer datasets: - minpeter/bfcl-v1-non-live-ast-hermes model-index: - name: output results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-1.5B-Instruct # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name load_in_8bit: false load_in_4bit: false strict: false # datasets: # - path: oneline-tool.jsonl # type: chat_template # chat_template: chatml # field_messages: conversations # message_field_role: from # message_field_content: value # - path: minpeter/stanford-alpaca-regen-llama-3.3 # type: # format: "<|im_start|>user\n{instruction}\n{input}<|im_end|>\n<|im_start|>assistant\n" # no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n" # shards: 52000 datasets: - path: minpeter/bfcl-v1-non-live-ast-hermes data_files: - result.parquet type: chat_template chat_template: chatml field_messages: conversations message_field_role: from message_field_content: value chat_template: chatml dataset_prepared_path: last_run_prepared output_dir: ./output adapter: lora lora_model_dir: sequence_len: 2048 pad_to_sequence_len: true sample_packing: true # val_set_size: 0.1 # eval_sample_packing: true lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: # special_tokens: # bos_token: null # eos_token: <|im_end|> # pad_token: <|endoftext|> ```

# output This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the minpeter/bfcl-v1-non-live-ast-hermes dataset. ## Model description Intentionally contaminated BFCL model, 😈 ``` 🔍 Running test: parallel_multiple ✅ Test completed: parallel_multiple. 🎯 Accuracy: 0.84 🔍 Running test: parallel ✅ Test completed: parallel. 🎯 Accuracy: 0.875 🔍 Running test: simple ✅ Test completed: simple. 🎯 Accuracy: 0.94 🔍 Running test: multiple ✅ Test completed: multiple. 🎯 Accuracy: 0.89 ``` ## Inference ```shell docker run --rm --runtime nvidia --gpus '"device=0"' \ -p 8000:8000 \ -e HF_TOKEN="" \ -v ~/.cache/huggingface:/root/.cache/huggingface \ vllm/vllm-openai:latest \ --model Qwen/Qwen2.5-1.5B-Instruct \ --enable-lora \ --lora-modules \ tool=minpeter/LoRA-corrupted-bfcl-1.5B-v1 \ --enable-auto-tool-choice \ --tool-call-parser hermes ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0