File size: 2,559 Bytes
5cd4c92
 
 
 
fa03fb9
 
5cd4c92
 
 
 
 
 
 
 
 
 
 
 
b68530f
 
5cd4c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b68530f
 
5cd4c92
 
 
b68530f
 
fa03fb9
 
 
8ff6b62
 
b68530f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa03fb9
5cd4c92
 
 
8ff6b62
5cd4c92
b68530f
5cd4c92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned_bert-base-uncased
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_bert-base-uncased

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1947
- Accuracy: 0.6793

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2761        | 1.0   | 102  | 1.3225          | 0.3375   |
| 0.9847        | 2.0   | 204  | 1.0792          | 0.5509   |
| 0.6882        | 3.0   | 306  | 0.9260          | 0.6382   |
| 0.5099        | 4.0   | 408  | 0.9072          | 0.6634   |
| 0.4614        | 5.0   | 510  | 0.9115          | 0.6867   |
| 0.3406        | 6.0   | 612  | 1.0022          | 0.6751   |
| 0.189         | 7.0   | 714  | 1.0881          | 0.6751   |
| 0.2179        | 8.0   | 816  | 1.1520          | 0.6712   |
| 0.2085        | 9.0   | 918  | 1.2567          | 0.6896   |
| 0.1914        | 10.0  | 1020 | 1.2074          | 0.6828   |
| 0.1271        | 11.0  | 1122 | 1.3389          | 0.6887   |
| 0.1236        | 12.0  | 1224 | 1.3539          | 0.6790   |
| 0.0946        | 13.0  | 1326 | 1.4042          | 0.6838   |
| 0.0968        | 14.0  | 1428 | 1.4079          | 0.6877   |
| 0.1095        | 15.0  | 1530 | 1.4884          | 0.6799   |
| 0.1102        | 16.0  | 1632 | 1.5244          | 0.6790   |
| 0.1159        | 17.0  | 1734 | 1.5238          | 0.6799   |
| 0.1448        | 18.0  | 1836 | 1.5568          | 0.6780   |
| 0.1105        | 19.0  | 1938 | 1.5629          | 0.6780   |
| 0.092         | 20.0  | 2040 | 1.5588          | 0.6809   |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2