|
--- |
|
title: chinese-alpaca-33b-merged |
|
emoji: 📚 |
|
colorFrom: gray |
|
colorTo: red |
|
sdk: gradio |
|
sdk_version: 3.23.0 |
|
app_file: app.py |
|
pinned: false |
|
--- |
|
|
|
加入中文词表并继续预训练中文Embedding,并在此基础上继续使用指令数据集finetuning,得到的中文Alpaca-33B模型。 |
|
|
|
模型转换用到的相关base及lora模型如下: |
|
- base-model: elinas/llama-30b-hf-transformers-4.29 |
|
- lora-model: ziqingyang/chinese-alpaca-lora-33b |
|
|
|
详情可参考:https://github.com/ymcui/Chinese-LLaMA-Alpaca/releases/tag/v4.0 |
|
|
|
|
|
### 使用方法参考 |
|
1. 安装模块包 |
|
```bash |
|
pip install sentencepiece |
|
pip install transformers>=4.28.0 |
|
``` |
|
|
|
2. 生成文本 |
|
```python |
|
import torch |
|
import transformers |
|
from transformers import LlamaTokenizer, LlamaForCausalLM |
|
|
|
def generate_prompt(text): |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{text} |
|
|
|
### Response:""" |
|
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained('minlik/chinese-alpaca-33b-merged') |
|
model = LlamaForCausalLM.from_pretrained('minlik/chinese-alpaca-33b-merged').half().to('cuda') |
|
model.eval() |
|
|
|
text = '第一个登上月球的人是谁?' |
|
prompt = generate_prompt(text) |
|
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda') |
|
|
|
|
|
with torch.no_grad(): |
|
output_ids = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=128, |
|
temperature=1, |
|
top_k=40, |
|
top_p=0.9, |
|
repetition_penalty=1.15 |
|
).cuda() |
|
output = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
print(output.replace(prompt, '').strip()) |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_minlik__chinese-alpaca-33b-merged) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 53.09 | |
|
| ARC (25-shot) | 59.3 | |
|
| HellaSwag (10-shot) | 78.43 | |
|
| MMLU (5-shot) | 57.69 | |
|
| TruthfulQA (0-shot) | 52.45 | |
|
| Winogrande (5-shot) | 76.09 | |
|
| GSM8K (5-shot) | 8.04 | |
|
| DROP (3-shot) | 39.67 | |
|
|