File size: 10,180 Bytes
e12de26
 
 
 
 
 
 
 
 
 
 
 
db42678
 
 
 
 
e12de26
 
 
 
 
 
 
 
 
 
 
 
 
db42678
e12de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db42678
 
 
 
 
 
 
 
 
e12de26
 
 
 
 
 
db42678
e12de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db42678
e12de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db42678
e12de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db42678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e12de26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 아이워너 스마트체지방체중계KS-BF4000/홈트용품/헬스용품  더베스트샾
- text: 트랜스텍 팔뚝형 가정용 자동 혈압계 혈압측정기 TMB-1597 상승가압방식  바이메드
- text: 휴비딕 초음파 무선 신장계 HUK-2 아기 키측정기 키재기 자동 거리 G 핑크 골든 플레이스
- text: 앳플리 T9 정확한 몸무게 저울 더블스마트인 체중계 가정용 전자 기계 화이트 (주)픽스몰
- text: 어린이 신장 측정기 높이  스티커 3D 키재기 신장계 B_큰 핑팝
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.971224790949336
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                       |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0   | <ul><li>'신장 측정 기계 표준 기계식 측정기 학교 병원 약국 건강 검진 신장계 키재기 70-190cm 블랙_기계적 핑팝'</li><li>'공룡 자석 귀여운 키재기 기린 눈금 벽 측정도구 소프트웨어 보내기[프로 버전-양고] 고소몽 새벽잡화점'</li><li>'키 몸무게 측정기 검사 헬스장 학교 검진 보건실 신체 160kg 제품 (블랙) 노마둔'</li></ul> |
| 5.0   | <ul><li>'휴비딕 신생아 유아 아기 고양이 강아지 반려동물 체중계 HUS-316B  (주)휴비딕'</li><li>'[애구애구] 강아지 고양이 체중계 건전지 포함, 애견 원터치 무선 체중계, 반려견 몸무계 측정기  애드마스터'</li><li>'상업용 전자 정밀 소형 저울T사우나 헬스장 체중계 전자저울 100KG 150KG 이로운발견'</li></ul>        |
| 0.0   | <ul><li>'스마트 만보기 시계 만보팔찌 손목만보계 칼로리시계 스마트 만보 시계 팔찌 손목 형 실리콘 디지털 계 만보기시계-민트 제이한 주식회사'</li><li>'오리온 계수기 FH102  주식회사 다원피앤피'</li><li>'미니 디지털카운터기 0~99999까지 / 반지계수기 카운터기-파랑 대박나라'</li></ul>                          |
| 4.0   | <ul><li>'브라운 써모스캔 귀 체온계 IRT6030  롯데백화점1관'</li><li>'브라운체온계 IRT-6030 적외선 귀체온계 가정용 신생아 체온계 필터21개+건전지 포함 브라운체온계 IRT-6030 주식회사 온라이브플러스'</li><li>'브라운 귀체온계 IRT-6030 + 필터21p포함/1년무상AS baby  신세계몰'</li></ul>           |
| 6.0   | <ul><li>'오므론 손목형 자동전자 혈압계 HEM-6161 가정용혈압계_MC  멸치쇼핑'</li><li>'인바디 BPBIO320N 자동 혈압계 BPBIO320N_그레이(테이블+의자 포함) 바디메디칼'</li><li>'휴비딕 비피첵 손목 자동 전자 혈압계 HBP-600 혈압측정기  판테온'</li></ul>                                  |
| 3.0   | <ul><li>'독일 LED 검이경(성인/아동 겸용)-건전지식  풍솔글로벌'</li><li>'간호사용 병원 진찰용품 의사 청진기 측정기 소아과 심박 내과  cosse2'</li><li>'SPIRIT 검이경 CK-939A /오토스코프/직접조사방식/알루미늄재질/좌우스위치방식적용  풍솔글로벌'</li></ul>                                    |
| 2.0   | <ul><li>'Wahoo Fitness 티커 심박수측정기(HRM) 스텔스 그레이 White 픽더마인드'</li><li>'POLAR Equine H10 라이딩 심박수 센서  라이브러리2'</li><li>'Polar H10 심박수 모니터, 블루투스 HRM 가슴 스트랩 - 아이폰 및 안드로이드 호환, 블랙  식스퀄리티'</li></ul>                    |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.9712 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh1")
# Run inference
preds = model("어린이 신장 측정기 높이 벽 스티커 3D 키재기 신장계 B_큰 핑팝")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.9771 | 18  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 6                     |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |
| 6.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0208  | 1    | 0.4314        | -               |
| 1.0417  | 50   | 0.1947        | -               |
| 2.0833  | 100  | 0.0912        | -               |
| 3.125   | 150  | 0.0968        | -               |
| 4.1667  | 200  | 0.0231        | -               |
| 5.2083  | 250  | 0.0004        | -               |
| 6.25    | 300  | 0.0001        | -               |
| 7.2917  | 350  | 0.0001        | -               |
| 8.3333  | 400  | 0.0           | -               |
| 9.375   | 450  | 0.0001        | -               |
| 10.4167 | 500  | 0.0           | -               |
| 11.4583 | 550  | 0.0           | -               |
| 12.5    | 600  | 0.0           | -               |
| 13.5417 | 650  | 0.0           | -               |
| 14.5833 | 700  | 0.0           | -               |
| 15.625  | 750  | 0.0           | -               |
| 16.6667 | 800  | 0.0           | -               |
| 17.7083 | 850  | 0.0           | -               |
| 18.75   | 900  | 0.0           | -               |
| 19.7917 | 950  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->