File size: 12,225 Bytes
b3bb6e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 백설 찰밀가루 3Kg 에프엠에스인터내셔널 주식회사
- text: 퀘이커 마시는오트밀 그래인 50g 20개 오트&봄딸기50gx10개_오트&우리쌀 50gx10개 (주)태풍
- text: CJ제일제당 백설 강력밀가루 2.5kg 둘레푸드
- text: 이츠웰 맛있는 튀김가루 1kg / CJ프레시웨이 청신호
- text: 피플스 퀵오트밀 500gx2 (1kg) 귀리 07.퀵오트500g+뮤즐리500g 피플스(Peoples)
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9629787234042553
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 11 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.0 | <ul><li>'[플라하반] 유기농 포리지 500g 외 2종 롤드오트 압착귀리 유기농 포리지 280g 주식회사 수성인터내셔널'</li><li>'포스트 화이버 오트밀 오리지날 350g 다복상사'</li><li>'오트밀(식사용) 1kg/이든타운/오트밀/오트밀죽/oatmeal/압착귀리/곡류/곡물/시리얼/씨리얼/후레이크/생식/선식/건강식/두유/우유/제과/제빵/쿠키/재료/식사대용/요거트 드랍쉽'</li></ul> |
| 0.0 | <ul><li>'볶은 검은깨 분말 가루 국내산 300g 검정깨 블랙푸드 검은콩청국장환 200g 농업회사법인 주식회사 두손애약초'</li><li>'볶은 검은깨 분말 가루 국내산 300g 검정깨 블랙푸드 검은콩검은깨환 210g 농업회사법인 주식회사 두손애약초'</li><li>'국산 냉풍건조 아로니아분말 500g [분말]아로니아분말 500g x 2팩 농업회사법인 청정산들해(주)'</li></ul> |
| 1.0 | <ul><li>'뚜레반 17곡 미숫가루 1kg B_청정원 홍초 자몽900ml 무한상사'</li><li>'뚜레반 17곡 미숫가루 1kg C_뚜레반 콩국수용 콩가루850g 무한상사'</li><li>'뚜레반 17곡 미숫가루A+1kg 주식회사 삼부'</li></ul> |
| 3.0 | <ul><li>'[대한제분]곰표부침가루1kg / 곰표튀김가루1kg 감사 곰표부침가루1kg 동아식품'</li><li>'오뚜기 나눔7호 직원 거래처 명절준비 선물세트 제이엔팩토리'</li><li>'큐원 쫄깃한 참 부침 가루 1kg 가정 업소 호박 파 전 전가네TMG'</li></ul> |
| 6.0 | <ul><li>'프리미엄 아몬드가루 1kg 95% 아몬드분말 아몬드파우더 프리미엄 아몬드분말(95%) 1kg 대륙유통'</li><li>'너츠빌 캘리포니아 아몬드 분말 가루 파우더 1kg 아몬드 슬라이스 1kg (주)엠디에프앤'</li><li>'너츠빌 캘리포니아 아몬드 분말 가루 파우더 1kg 아몬드 분말 100% 1kg (주)엠디에프앤'</li></ul> |
| 8.0 | <ul><li>'사조해표 찹쌀가루 350g 건우푸드'</li><li>'사조 해표 찹쌀가루 350g 감자전분 350g 주식회사 더 골든트리'</li><li>'해표 찹쌀가루 350g-1개 에이치엠몰(HM mall)'</li></ul> |
| 10.0 | <ul><li>'해표 튀김가루 1kg/부침요리/전 해표 튀김가루 1kg 단비마켓'</li><li>'CJ제일제당 백설 치킨 튀김가루 1kg 바름푸드'</li><li>'CJ제일제당 백설 튀김가루 1kg 1)튀김가루 태성유통'</li></ul> |
| 4.0 | <ul><li>'신일 냉동 골드빵가루 2kg (주)우주식품디씨오피'</li><li>'오뚜기 빵가루 1KG 자취 대용량 식자재 선물 튀김 제사 명절 부침개 간식 하나칭구'</li><li>'오뚜기 빵가루 200g 이고지고'</li></ul> |
| 2.0 | <ul><li>'백설 박력밀가루 1kg (박력분) 주식회사 몬즈컴퍼니'</li><li>'아티장 밀가루 T55 20KG 백설 베이킹스타'</li><li>'박력밀가루(큐원 1K) 썬샤인웍스'</li></ul> |
| 5.0 | <ul><li>'[대두식품] 강력쌀가루(국산) 15kg (주)대두식품서울지점'</li><li>'싸리재 유기농 습식 쌀가루 [ 백미 멥쌀가루 1kg ] 떡만들기 베이킹 비건요리 무염백미찹쌀가루 1kg 농업회사법인콩사랑유한회사'</li><li>'햇쌀마루 박력쌀가루 3kg 이캔유통'</li></ul> |
| 9.0 | <ul><li>'뚜레반 날콩가루 1kg (주)울산팡'</li><li>'복만네 콩국수용 콩가루 850g 05.해늘이볶은콩가루1kg 바른에프에스'</li><li>'[복만네] 콩국수용 콩가루 850g / 콩국 선식 (주)유영유통'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9630 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd0")
# Run inference
preds = model("CJ제일제당 백설 강력밀가루 2.5kg 둘레푸드")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 8.9308 | 24 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 22 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 32 |
| 6.0 | 18 |
| 7.0 | 50 |
| 8.0 | 26 |
| 9.0 | 50 |
| 10.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0143 | 1 | 0.4619 | - |
| 0.7143 | 50 | 0.2999 | - |
| 1.4286 | 100 | 0.1066 | - |
| 2.1429 | 150 | 0.0721 | - |
| 2.8571 | 200 | 0.0457 | - |
| 3.5714 | 250 | 0.03 | - |
| 4.2857 | 300 | 0.0045 | - |
| 5.0 | 350 | 0.002 | - |
| 5.7143 | 400 | 0.004 | - |
| 6.4286 | 450 | 0.002 | - |
| 7.1429 | 500 | 0.0077 | - |
| 7.8571 | 550 | 0.002 | - |
| 8.5714 | 600 | 0.006 | - |
| 9.2857 | 650 | 0.0019 | - |
| 10.0 | 700 | 0.0001 | - |
| 10.7143 | 750 | 0.0001 | - |
| 11.4286 | 800 | 0.0001 | - |
| 12.1429 | 850 | 0.0 | - |
| 12.8571 | 900 | 0.0 | - |
| 13.5714 | 950 | 0.0 | - |
| 14.2857 | 1000 | 0.0 | - |
| 15.0 | 1050 | 0.0 | - |
| 15.7143 | 1100 | 0.0 | - |
| 16.4286 | 1150 | 0.0 | - |
| 17.1429 | 1200 | 0.0 | - |
| 17.8571 | 1250 | 0.0 | - |
| 18.5714 | 1300 | 0.0 | - |
| 19.2857 | 1350 | 0.0 | - |
| 20.0 | 1400 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |