|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: HDTOP USB3.0 to HDMI 4K 영상 캡처보드15cm/HT-3C009/입력 4K 60Hz/녹화 1080P 60Hz/딜레이 |
|
없는 실시간 녹화/알루미늄 하우징/금도금 커넥터 디피시스템 |
|
- text: 넥시 CAP02 USB HDMI 캡쳐보드 젠더타입 주식회사 디앤에스티 |
|
- text: 블랙매직 DeckLink 8K Pro 덱링크 8k pro 디지탈A/V세상 |
|
- text: 브리츠 BZ-SP600X 화이트 커브드 게이밍 사운드바 (주)에이치앤인터내셔널 |
|
- text: AVerMedia Live Gamer 4K 2.1 GC575 초이스컴퓨터 주식회사 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.8028770510227017 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 10 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 3 | <ul><li>'Britz 브리츠인터내셔널 BA-UMK120 다크실버 주식회사 꿈누리'</li><li>'Britz Accessories BA-R9 SoundBar 스피커 [화이트] (주)조이젠'</li><li>'크리에이티브 PEBBLE V2 (주)아이티블루'</li></ul> | |
|
| 2 | <ul><li>'GN-2000S 구즈넥 마이크 콘덴서 (회의, 강연, 설교, 스피치, 교회, 법원, 방송) 사운드스토리'</li><li>'컴스 MT195 회의실용 콘덴서 마이크 아이코다(주)'</li><li>'고독스 EM68 RGB 카디오이드 USB 콘덴서 마이크 스탠드 / 납품 세금계산서 가능 주식회사 모즈인터내셔날'</li></ul> | |
|
| 8 | <ul><li>'레이저코리아 Razer Kiyo X 키요 X 웹캠 YT 주식회사 옐로우트리'</li><li>'앱코 APC930 QHD 웹캠 (블랙) 주식회사 동행하기'</li><li>'[병행,벌크]로지텍 C922 Pro Stream 웹캠 더블유에이취제이(WHJ)'</li></ul> | |
|
| 5 | <ul><li>'포커스라이트 스칼렛2i2 3세대 FocusriScarlett 2i2 3rd Gen 와이지스토어(주) (YG store Co., Ltd)'</li><li>'Focusrite 포커스라이트 Scarlett 18i8 3세대 오디오 인터페이스 씨엠뮤직(CM music)'</li><li>'크리에이티브 Creative 사운드 블라스터 X5 (주)아토닉스'</li></ul> | |
|
| 4 | <ul><li>'CORSAIR VOID RGB ELITE WIRELESS (화이트, 정품) 주식회사 꿈누리'</li><li>'TFG CH240 컬러풀 7.1Ch 게이밍헤드셋 (초경량 / 노이즈캔슬링 / 로스트아크) 블랙 (주)한성'</li><li>'로지텍 PRO X 2 LIGHTSPEED (핑크) 주식회사 조이쿨'</li></ul> | |
|
| 7 | <ul><li>'HD60X 주식회사 글렌트리'</li><li>'블랙매직 Blackmagic Design ATEM Mini Pro 아템미니프로 어썸팩토리(awesome factory)'</li><li>'AVerMedia ER330 EzRecorder PVR(독립형 녹화장치) (주)스트림텍'</li></ul> | |
|
| 0 | <ul><li>'이지넷유비쿼터스 NEXT-4516HDP 16채널 비디오 발룬 수신기 에이치엠에스'</li><li>'하이크비젼 DS-7604NI-K1/4P 4채널 IP POE NVR CCTV테크'</li><li>'[HIKVISION 공식 수입원] 하이크비전 DS-7608NI-I2/8P UHD 4K IP카메라 네트워크 녹화기 (주)씨넥스존'</li></ul> | |
|
| 6 | <ul><li>'스카이디지탈 DT-800 HDTV 안테나 (주)컴퓨존'</li><li>'(스카이디지탈) DT-800 HDTV 안테나 /안테나 엠지솔루션'</li><li>'무료 스카이디지탈 SKY DT-800 HDTV 지상파 안테나 주식회사에프엘인텍'</li></ul> | |
|
| 1 | <ul><li>'서진네트웍스 유니콘 AV-M9 UHD4K 안드로이드 셋탑박스 디빅스미디어플레이어 광고용디스플레이 (주)컴퓨존'</li><li>'유니콘 AV-M7 2세대 디빅스플레이어 UHD 4K지원 미디어플레이어 더원'</li><li>'서진네트웍스 UNICORN AV-M9 정품 멀티미디어 플레이어/영샵 영 샵'</li></ul> | |
|
| 9 | <ul><li>'옴니트로닉 MSP-Q1 2채널 휴대용 마이크스피커 핸드+핸드마이크 에이스전자'</li><li>'[공식] 에버미디어 AS311 Speakerphon 휴대용 스피커폰 AI 소음감지 USB전원 주식회사 이선디지탈'</li><li>'브리츠 BE-MC100 야외설치 아웃도어 방수 스피커 (주)담다몰'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.8029 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_el8") |
|
# Run inference |
|
preds = model("넥시 CAP02 USB HDMI 캡쳐보드 젠더타입 주식회사 디앤에스티") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 9.3503 | 26 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 49 | |
|
| 1 | 25 | |
|
| 2 | 50 | |
|
| 3 | 50 | |
|
| 4 | 50 | |
|
| 5 | 50 | |
|
| 6 | 15 | |
|
| 7 | 50 | |
|
| 8 | 50 | |
|
| 9 | 5 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0161 | 1 | 0.496 | - | |
|
| 0.8065 | 50 | 0.2401 | - | |
|
| 1.6129 | 100 | 0.0385 | - | |
|
| 2.4194 | 150 | 0.025 | - | |
|
| 3.2258 | 200 | 0.0181 | - | |
|
| 4.0323 | 250 | 0.0004 | - | |
|
| 4.8387 | 300 | 0.0002 | - | |
|
| 5.6452 | 350 | 0.0001 | - | |
|
| 6.4516 | 400 | 0.0002 | - | |
|
| 7.2581 | 450 | 0.0001 | - | |
|
| 8.0645 | 500 | 0.0001 | - | |
|
| 8.8710 | 550 | 0.0001 | - | |
|
| 9.6774 | 600 | 0.0001 | - | |
|
| 10.4839 | 650 | 0.0001 | - | |
|
| 11.2903 | 700 | 0.0001 | - | |
|
| 12.0968 | 750 | 0.0 | - | |
|
| 12.9032 | 800 | 0.0 | - | |
|
| 13.7097 | 850 | 0.0 | - | |
|
| 14.5161 | 900 | 0.0 | - | |
|
| 15.3226 | 950 | 0.0 | - | |
|
| 16.1290 | 1000 | 0.0 | - | |
|
| 16.9355 | 1050 | 0.0 | - | |
|
| 17.7419 | 1100 | 0.0 | - | |
|
| 18.5484 | 1150 | 0.0 | - | |
|
| 19.3548 | 1200 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |