File size: 11,263 Bytes
d822edb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: HDTOP USB3.0 to HDMI 4K 영상 캡처보드15cm/HT-3C009/입력 4K 60Hz/녹화 1080P 60Hz/딜레이
없는 실시간 녹화/알루미늄 하우징/금도금 커넥터 디피시스템
- text: 넥시 CAP02 USB HDMI 캡쳐보드 젠더타입 주식회사 디앤에스티
- text: 블랙매직 DeckLink 8K Pro 덱링크 8k pro 디지탈A/V세상
- text: 브리츠 BZ-SP600X 화이트 커브드 게이밍 사운드바 (주)에이치앤인터내셔널
- text: AVerMedia Live Gamer 4K 2.1 GC575 초이스컴퓨터 주식회사
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8028770510227017
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 10 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | <ul><li>'Britz 브리츠인터내셔널 BA-UMK120 다크실버 주식회사 꿈누리'</li><li>'Britz Accessories BA-R9 SoundBar 스피커 [화이트] (주)조이젠'</li><li>'크리에이티브 PEBBLE V2 (주)아이티블루'</li></ul> |
| 2 | <ul><li>'GN-2000S 구즈넥 마이크 콘덴서 (회의, 강연, 설교, 스피치, 교회, 법원, 방송) 사운드스토리'</li><li>'컴스 MT195 회의실용 콘덴서 마이크 아이코다(주)'</li><li>'고독스 EM68 RGB 카디오이드 USB 콘덴서 마이크 스탠드 / 납품 세금계산서 가능 주식회사 모즈인터내셔날'</li></ul> |
| 8 | <ul><li>'레이저코리아 Razer Kiyo X 키요 X 웹캠 YT 주식회사 옐로우트리'</li><li>'앱코 APC930 QHD 웹캠 (블랙) 주식회사 동행하기'</li><li>'[병행,벌크]로지텍 C922 Pro Stream 웹캠 더블유에이취제이(WHJ)'</li></ul> |
| 5 | <ul><li>'포커스라이트 스칼렛2i2 3세대 FocusriScarlett 2i2 3rd Gen 와이지스토어(주) (YG store Co., Ltd)'</li><li>'Focusrite 포커스라이트 Scarlett 18i8 3세대 오디오 인터페이스 씨엠뮤직(CM music)'</li><li>'크리에이티브 Creative 사운드 블라스터 X5 (주)아토닉스'</li></ul> |
| 4 | <ul><li>'CORSAIR VOID RGB ELITE WIRELESS (화이트, 정품) 주식회사 꿈누리'</li><li>'TFG CH240 컬러풀 7.1Ch 게이밍헤드셋 (초경량 / 노이즈캔슬링 / 로스트아크) 블랙 (주)한성'</li><li>'로지텍 PRO X 2 LIGHTSPEED (핑크) 주식회사 조이쿨'</li></ul> |
| 7 | <ul><li>'HD60X 주식회사 글렌트리'</li><li>'블랙매직 Blackmagic Design ATEM Mini Pro 아템미니프로 어썸팩토리(awesome factory)'</li><li>'AVerMedia ER330 EzRecorder PVR(독립형 녹화장치) (주)스트림텍'</li></ul> |
| 0 | <ul><li>'이지넷유비쿼터스 NEXT-4516HDP 16채널 비디오 발룬 수신기 에이치엠에스'</li><li>'하이크비젼 DS-7604NI-K1/4P 4채널 IP POE NVR CCTV테크'</li><li>'[HIKVISION 공식 수입원] 하이크비전 DS-7608NI-I2/8P UHD 4K IP카메라 네트워크 녹화기 (주)씨넥스존'</li></ul> |
| 6 | <ul><li>'스카이디지탈 DT-800 HDTV 안테나 (주)컴퓨존'</li><li>'(스카이디지탈) DT-800 HDTV 안테나 /안테나 엠지솔루션'</li><li>'무료 스카이디지탈 SKY DT-800 HDTV 지상파 안테나 주식회사에프엘인텍'</li></ul> |
| 1 | <ul><li>'서진네트웍스 유니콘 AV-M9 UHD4K 안드로이드 셋탑박스 디빅스미디어플레이어 광고용디스플레이 (주)컴퓨존'</li><li>'유니콘 AV-M7 2세대 디빅스플레이어 UHD 4K지원 미디어플레이어 더원'</li><li>'서진네트웍스 UNICORN AV-M9 정품 멀티미디어 플레이어/영샵 영 샵'</li></ul> |
| 9 | <ul><li>'옴니트로닉 MSP-Q1 2채널 휴대용 마이크스피커 핸드+핸드마이크 에이스전자'</li><li>'[공식] 에버미디어 AS311 Speakerphon 휴대용 스피커폰 AI 소음감지 USB전원 주식회사 이선디지탈'</li><li>'브리츠 BE-MC100 야외설치 아웃도어 방수 스피커 (주)담다몰'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.8029 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el8")
# Run inference
preds = model("넥시 CAP02 USB HDMI 캡쳐보드 젠더타입 주식회사 디앤에스티")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.3503 | 26 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 49 |
| 1 | 25 |
| 2 | 50 |
| 3 | 50 |
| 4 | 50 |
| 5 | 50 |
| 6 | 15 |
| 7 | 50 |
| 8 | 50 |
| 9 | 5 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0161 | 1 | 0.496 | - |
| 0.8065 | 50 | 0.2401 | - |
| 1.6129 | 100 | 0.0385 | - |
| 2.4194 | 150 | 0.025 | - |
| 3.2258 | 200 | 0.0181 | - |
| 4.0323 | 250 | 0.0004 | - |
| 4.8387 | 300 | 0.0002 | - |
| 5.6452 | 350 | 0.0001 | - |
| 6.4516 | 400 | 0.0002 | - |
| 7.2581 | 450 | 0.0001 | - |
| 8.0645 | 500 | 0.0001 | - |
| 8.8710 | 550 | 0.0001 | - |
| 9.6774 | 600 | 0.0001 | - |
| 10.4839 | 650 | 0.0001 | - |
| 11.2903 | 700 | 0.0001 | - |
| 12.0968 | 750 | 0.0 | - |
| 12.9032 | 800 | 0.0 | - |
| 13.7097 | 850 | 0.0 | - |
| 14.5161 | 900 | 0.0 | - |
| 15.3226 | 950 | 0.0 | - |
| 16.1290 | 1000 | 0.0 | - |
| 16.9355 | 1050 | 0.0 | - |
| 17.7419 | 1100 | 0.0 | - |
| 18.5484 | 1150 | 0.0 | - |
| 19.3548 | 1200 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |