|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: Pulsar X2V2 미니 무선 게이밍 마우스 (블랙) 와이에스비투비 |
|
- text: TOSHIBA B-EX4T2 바코드프린터 산업용프린터 라벨프린터 203DPI_USB ㈜비티에스홀딩스 |
|
- text: '[당일출고]삼성전자 SL-J1680 컬러잉크젯 복합기 인쇄+복사+스캔 [정품잉크포함] 제일프린텍' |
|
- text: 지클릭커 슈퍼히어로 SPK100 저소음 유선 무선 블루투스 레인보우 백라이트 기계식 게임용 키보드 (레트로 레드) (주)피씨베이스 |
|
- text: NIIMBOT 님봇 D110 라벨기 휴대용 라벨프린터 라벨1롤포함 빅마운트앤컴퍼니 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.8548111301103685 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 9 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 7 | <ul><li>'와콤 CTL-472 웹툰 입문용 타블렛 펜 온라인강의 주식회사 지디스엠알오'</li><li>'와콤 타블렛 CTL-4100 와콤인튜어스 웹툰 (주)코티니'</li><li>'와콤 신티크16 DTK-1660 케이에이씨앤씨'</li></ul> | |
|
| 1 | <ul><li>'브라더공식판매대리점 DCP-T426W 무한잉크복합기 인쇄 복사 스캔 무선 AS연장 (주)대명아이티'</li><li>'교세라 ECOSYS M5521cdn 컬러레이저복합기 정품토너포함 한라테크'</li><li>'DCP-T720DW 브라더정품 무한잉크복합기 인쇄 복사 스캔 자동양면인쇄 (주)진전산시스템'</li></ul> | |
|
| 4 | <ul><li>'로지텍 코리아 미니멀 무선 일루미네이티드 키보드 MX KEYS MINI 블랙(그라파이트) 주식회사 자강정보통신'</li><li>'앱코 K660 축교환 완전방수 게이밍 카일광축 레인보우LED 블랙,리니어 에스티에스컴퍼니'</li><li>'ABKO HACKER K523 기계식 축교환 LED 키패드 주식회사 브라보세컨즈'</li></ul> | |
|
| 2 | <ul><li>'브라더 TN-2380 정품토너 2.6K HL L2365DW HL L2360dn MFC L2700D MFC L2700DW 주식회사 휴먼아이티'</li><li>'삼성전자정품 폐토너통 CLT-W406/ C510W/ C513W/ C563W/ C563FW 엘케이솔루션'</li><li>'(HP) No.680 정품 F6V27AA 검정 정품잉크 검정 총1개만구매(2개이상주문시발송안됨) 밀알시스템'</li></ul> | |
|
| 6 | <ul><li>'와콤원 펜 CP91300B2Z 삼성갤럭시탭,갤럭시노트,오닉스 호환 펜 '</li><li>'드로잉장갑 와콤 신티크 XP-PEN 휴이온 액정타블렛 아이패드 태블릿 터치오류방지 '</li><li>'드로잉장갑 와콤 신티크 XP-PEN 휴이온 액정타블렛 아이패드 태블릿 터치오류방지 '</li></ul> | |
|
| 8 | <ul><li>'◆◆ 정품 샘플테이프 + ◆◆ 브라더 正品 이름 라벨스티커기계 PT-P900W QR코드 wifi ◀正品▶ PT-P900W 탑정보기술'</li><li>'가제트 3D펜 GP3000+5M PLA 필라멘트 세트(24색) (주)위드피플즈'</li><li>'인스탁스 와이드 링크 포토프린터 모카 그레이(+아크릴액자) 한국후지필름 (주)'</li></ul> | |
|
| 3 | <ul><li>'엡손 DS-30000, 양면 스캐너 A3 주식회사 케이에스샵'</li><li>'엡손 WorkForce DS-50000 (주)테드이십일'</li><li>'엡손스캐너 ES-580WMLP 미니멀 라이프 패키지(ES-580W+재단기+롤러)북스캐너 (주)에이엔에이코리아'</li></ul> | |
|
| 5 | <ul><li>'로지텍 MK295 SILENT WIRELESS COMBO (화이트) (주)아토닉스'</li><li>'로지텍 MK275 영문자판 병행수입 제이제이 인터내셔널'</li><li>'로지텍코리아 시그니처 MK650 무선 합본 (그래파이트) 주식회사 지엠샤이'</li></ul> | |
|
| 0 | <ul><li>'ROCCAT KONE PRO AIR (블랙) (주)디아씨앤씨'</li><li>'[Logitech]로지텍 Trackman Marble USB 마우스 트랙맨 트랙볼 마블 마우스 벌크 /택배/병행/ 당일출고 Trackman Marble USB 허브포스트'</li><li>'로지텍 G402 Hyperion Fury (주)케이엘시스템'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.8548 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_el18") |
|
# Run inference |
|
preds = model("Pulsar X2V2 미니 무선 게이밍 마우스 (블랙) 와이에스비투비") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 4 | 10.5569 | 27 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 50 | |
|
| 1 | 50 | |
|
| 2 | 50 | |
|
| 3 | 50 | |
|
| 4 | 50 | |
|
| 5 | 50 | |
|
| 6 | 13 | |
|
| 7 | 50 | |
|
| 8 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0154 | 1 | 0.4961 | - | |
|
| 0.7692 | 50 | 0.1923 | - | |
|
| 1.5385 | 100 | 0.0615 | - | |
|
| 2.3077 | 150 | 0.0532 | - | |
|
| 3.0769 | 200 | 0.0513 | - | |
|
| 3.8462 | 250 | 0.0283 | - | |
|
| 4.6154 | 300 | 0.0313 | - | |
|
| 5.3846 | 350 | 0.0258 | - | |
|
| 6.1538 | 400 | 0.0174 | - | |
|
| 6.9231 | 450 | 0.0053 | - | |
|
| 7.6923 | 500 | 0.0021 | - | |
|
| 8.4615 | 550 | 0.0039 | - | |
|
| 9.2308 | 600 | 0.0059 | - | |
|
| 10.0 | 650 | 0.0001 | - | |
|
| 10.7692 | 700 | 0.0001 | - | |
|
| 11.5385 | 750 | 0.0001 | - | |
|
| 12.3077 | 800 | 0.0001 | - | |
|
| 13.0769 | 850 | 0.0001 | - | |
|
| 13.8462 | 900 | 0.0 | - | |
|
| 14.6154 | 950 | 0.0001 | - | |
|
| 15.3846 | 1000 | 0.0 | - | |
|
| 16.1538 | 1050 | 0.0 | - | |
|
| 16.9231 | 1100 | 0.0 | - | |
|
| 17.6923 | 1150 | 0.0 | - | |
|
| 18.4615 | 1200 | 0.0 | - | |
|
| 19.2308 | 1250 | 0.0 | - | |
|
| 20.0 | 1300 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |