File size: 11,499 Bytes
fe2afcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Pulsar X2V2 미니 무선 게이밍 마우스 (블랙) 와이에스비투비
- text: TOSHIBA B-EX4T2 바코드프린터 산업용프린터 라벨프린터 203DPI_USB ㈜비티에스홀딩스
- text: '[당일출고]삼성전자 SL-J1680 컬러잉크젯 복합기 인쇄+복사+스캔 [정품잉크포함] 제일프린텍'
- text: 지클릭커 슈퍼히어로 SPK100 저소음 유선 무선 블루투스 레인보우 백라이트 기계식 게임용 키보드 (레트로 레드) (주)피씨베이스
- text: NIIMBOT 님봇 D110 라벨기 휴대용 라벨프린터 라벨1롤포함 빅마운트앤컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8548111301103685
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | <ul><li>'와콤 CTL-472 웹툰 입문용 타블렛 펜 온라인강의 주식회사 지디스엠알오'</li><li>'와콤 타블렛 CTL-4100 와콤인튜어스 웹툰 (주)코티니'</li><li>'와콤 신티크16 DTK-1660 케이에이씨앤씨'</li></ul> |
| 1 | <ul><li>'브라더공식판매대리점 DCP-T426W 무한잉크복합기 인쇄 복사 스캔 무선 AS연장 (주)대명아이티'</li><li>'교세라 ECOSYS M5521cdn 컬러레이저복합기 정품토너포함 한라테크'</li><li>'DCP-T720DW 브라더정품 무한잉크복합기 인쇄 복사 스캔 자동양면인쇄 (주)진전산시스템'</li></ul> |
| 4 | <ul><li>'로지텍 코리아 미니멀 무선 일루미네이티드 키보드 MX KEYS MINI 블랙(그라파이트) 주식회사 자강정보통신'</li><li>'앱코 K660 축교환 완전방수 게이밍 카일광축 레인보우LED 블랙,리니어 에스티에스컴퍼니'</li><li>'ABKO HACKER K523 기계식 축교환 LED 키패드 주식회사 브라보세컨즈'</li></ul> |
| 2 | <ul><li>'브라더 TN-2380 정품토너 2.6K HL L2365DW HL L2360dn MFC L2700D MFC L2700DW 주식회사 휴먼아이티'</li><li>'삼성전자정품 폐토너통 CLT-W406/ C510W/ C513W/ C563W/ C563FW 엘케이솔루션'</li><li>'(HP) No.680 정품 F6V27AA 검정 정품잉크 검정 총1개만구매(2개이상주문시발송안됨) 밀알시스템'</li></ul> |
| 6 | <ul><li>'와콤원 펜 CP91300B2Z 삼성갤럭시탭,갤럭시노트,오닉스 호환 펜 '</li><li>'드로잉장갑 와콤 신티크 XP-PEN 휴이온 액정타블렛 아이패드 태블릿 터치오류방지 '</li><li>'드로잉장갑 와콤 신티크 XP-PEN 휴이온 액정타블렛 아이패드 태블릿 터치오류방지 '</li></ul> |
| 8 | <ul><li>'◆◆ 정품 샘플테이프 + ◆◆ 브라더 正品 이름 라벨스티커기계 PT-P900W QR코드 wifi ◀正品▶ PT-P900W 탑정보기술'</li><li>'가제트 3D펜 GP3000+5M PLA 필라멘트 세트(24색) (주)위드피플즈'</li><li>'인스탁스 와이드 링크 포토프린터 모카 그레이(+아크릴액자) 한국후지필름 (주)'</li></ul> |
| 3 | <ul><li>'엡손 DS-30000, 양면 스캐너 A3 주식회사 케이에스샵'</li><li>'엡손 WorkForce DS-50000 (주)테드이십일'</li><li>'엡손스캐너 ES-580WMLP 미니멀 라이프 패키지(ES-580W+재단기+롤러)북스캐너 (주)에이엔에이코리아'</li></ul> |
| 5 | <ul><li>'로지텍 MK295 SILENT WIRELESS COMBO (화이트) (주)아토닉스'</li><li>'로지텍 MK275 영문자판 병행수입 제이제이 인터내셔널'</li><li>'로지텍코리아 시그니처 MK650 무선 합본 (그래파이트) 주식회사 지엠샤이'</li></ul> |
| 0 | <ul><li>'ROCCAT KONE PRO AIR (블랙) (주)디아씨앤씨'</li><li>'[Logitech]로지텍 Trackman Marble USB 마우스 트랙맨 트랙볼 마블 마우스 벌크 /택배/병행/ 당일출고 Trackman Marble USB 허브포스트'</li><li>'로지텍 G402 Hyperion Fury (주)케이엘시스템'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.8548 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el18")
# Run inference
preds = model("Pulsar X2V2 미니 무선 게이밍 마우스 (블랙) 와이에스비투비")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 4 | 10.5569 | 27 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
| 4 | 50 |
| 5 | 50 |
| 6 | 13 |
| 7 | 50 |
| 8 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0154 | 1 | 0.4961 | - |
| 0.7692 | 50 | 0.1923 | - |
| 1.5385 | 100 | 0.0615 | - |
| 2.3077 | 150 | 0.0532 | - |
| 3.0769 | 200 | 0.0513 | - |
| 3.8462 | 250 | 0.0283 | - |
| 4.6154 | 300 | 0.0313 | - |
| 5.3846 | 350 | 0.0258 | - |
| 6.1538 | 400 | 0.0174 | - |
| 6.9231 | 450 | 0.0053 | - |
| 7.6923 | 500 | 0.0021 | - |
| 8.4615 | 550 | 0.0039 | - |
| 9.2308 | 600 | 0.0059 | - |
| 10.0 | 650 | 0.0001 | - |
| 10.7692 | 700 | 0.0001 | - |
| 11.5385 | 750 | 0.0001 | - |
| 12.3077 | 800 | 0.0001 | - |
| 13.0769 | 850 | 0.0001 | - |
| 13.8462 | 900 | 0.0 | - |
| 14.6154 | 950 | 0.0001 | - |
| 15.3846 | 1000 | 0.0 | - |
| 16.1538 | 1050 | 0.0 | - |
| 16.9231 | 1100 | 0.0 | - |
| 17.6923 | 1150 | 0.0 | - |
| 18.4615 | 1200 | 0.0 | - |
| 19.2308 | 1250 | 0.0 | - |
| 20.0 | 1300 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |