File size: 12,879 Bytes
eb180d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: WD NEW MY PASSPORT 외장SSD 1TB 외장하드 스마트폰 아이패드 XBOX  세븐컴
- text: '2.5인치 HDD SSD 보관 케이스 USB3.0 SATA 어답터 확장 외장하드 케이스 선택1: 2.5인치 HDD SSD 하드 보관함
    퀄리티어슈어런스코리아'
- text: 이지넷 NEXT-350U3 3.5 외장케이스/USB3.0 하드미포함  레알몰
- text: NEXT-644DU3 4베이 HDD SSD USB3.0 도킹스테이션  프리줌
- text: Seagate IronWolf NAS ST1000VN002 1TB AS3년/공식판매점  (주)픽셀아트 (PIXELART)
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.7785757031717534
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 12 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                      |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | <ul><li>'키오시아 EXCERIA PLUS G3 M.2 NVMe  엄지척스토어'</li><li>'[키오시아] EXCERIA G2 M.2 NVMe (500GB)  주식회사 에티버스이비티'</li><li>'ADATA Ultimate SU650 120GB  밀알시스템'</li></ul>                                                                                              |
| 1     | <ul><li>'시놀로지 Expansion Unit DX517 (5베이/하드미포함) 타워형 확장 유닛 DS1817+, DS1517+  (주)비엔지센터'</li><li>'[아이피타임 쇼핑몰] NAS1 dual 1베이 나스 (하드미포함)  (주)에이치앤인터내셔널'</li><li>'시놀로지 정품 나스 DS223 2베이 NAS 스토리지 클라우드 서버 구축 시놀로지 NAS DS223 유심홀릭'</li></ul>                            |
| 0     | <ul><li>'씨게이트 바라쿠다 1TB ST1000DM010 SATA3 64M 1테라 하드 오늘 출발  주식회사 호스트시스템'</li><li>'WD BLUE (WD20EZBX) 3.5 SATA HDD (2TB/7200rpm/256MB/SMR)  아이코다(주)'</li><li>'씨게이트 IronWolf 8TB ST8000VN004 (SATA3/7200/256M)  (주)조이젠'</li></ul>                                |
| 4     | <ul><li>'Sandisk Extreme Pro CZ880 (128GB)  (주)아이티엔조이'</li><li>'Sandisk Cruzer Glide CZ600 (16GB)  컴튜브 주식회사'</li><li>'샌디스크 울트라 핏 USB 3.1 32GB Ultra Fit CZ430 초소형  주식회사 에스티원테크'</li></ul>                                                                     |
| 6     | <ul><li>'NEXT-DC3011TS 1:11 HDD SSD 스마트 하드복사 삭제기  리벤플러스'</li><li>'넥시 NX-802RU31 2베이 RAID 데이터 스토리지 하드 도킹스테이션 (NX768)  대성NETWORK'</li><li>'넥시 USB3.1 C타입 2베이 DAS 데이터 스토리지 NX768  (주)팁스커뮤니케이션즈'</li></ul>                                                        |
| 11    | <ul><li>'이지넷유비쿼터스 NEXT-215U3 (하드미포함)  (주)컴파크씨앤씨'</li><li>'ORICO PHP-35 보라 3.5인치 하드 보호케이스  (주)조이젠'</li><li>'[ORICO] PHP-35 3.5형 하드디스크 보관함 [블루]  (주)컴퓨존'</li></ul>                                                                                              |
| 2     | <ul><li>'(주)근호컴 [라인업시스템]LS-EXODDC 외장ODD  (주)근호컴'</li><li>'[라인업시스템] LANSTAR LS-BRODD 블루레이 외장ODD  주식회사 에티버스이비티'</li><li>'넥스트유 NEXT-200DVD-RW USB3.0 DVD-RW 드라이브 )  (주)인컴씨엔에스'</li></ul>                                                                         |
| 5     | <ul><li>'(주)근호컴 [멜로디]1P 투명 연질 CD/DVD 케이스 (10장)  (주)근호컴'</li><li>'HP CD-R 10P / 52X 700MB / 원통케이스 포장 제품  티앤제이 (T&J) 통상'</li><li>'엑토 CD롬컨테이너_50매입 CDC-50K /CD보관함/CD케이스/씨디보관함/씨디케이스/cd정리함 CDC-50K 아이보리 솔로몬샵'</li></ul>                                           |
| 9     | <ul><li>'시놀로지 비드라이브 BDS70-1T BeeDrive 1TB 외장SSD 개인 백업허브 정품  솔루션 웍스(Solution Works)'</li><li>'CORSAIR EX100U Portable SSD Type C (1TB)  (주)아이티엔조이'</li><li>'ASUS ROG STRIX ARION ESD-S1C M 2 NVMe SSD 외장케이스  (주)아이웍스'</li></ul>                                |
| 8     | <ul><li>'넥스트유 NEXT-651DCU3 도킹스테이션 2베이  (주)수빈인포텍'</li><li>'이지넷유비쿼터스 넥스트유 659CCU3 도킹 스테이션  주식회사 매커드'</li><li>'이지넷유비쿼터스 NEXT-644DU3 4베이 도킹스테이션  에이치엠에스'</li></ul>                                                                                                |
| 10    | <ul><li>'USB3.0 4베이 DAS 스토리지 NX770  (주)담다몰'</li><li>'[NEXI] NX-804RU30 외장 케이스 HDD SSD USB 3.0 4베이 하드 도킹스테이션 NX770  주식회사 유진정보통신'</li><li>'[NEXI] 넥시 NX-804RU30 RAID (4베이) [USB3.0] [NX770] [DAS] [하드미포함]  (주)컴퓨존'</li></ul>                                    |
| 7     | <ul><li>'USB3.0 하드 도킹스테이션 복제 복사 클론 복사기 HDD SSD 2.5인치 3.5인치 듀얼 외장하드 케이스 Q6GCLONE  퀄리티어슈런스'</li><li>'USB3.0 하드 도킹스테이션 복제 복사 클론 복사기 HDD SSD 2.5인치 3.5인치 듀얼 외장하드 케이스 28TB지원  퀄리티어슈런스'</li><li>'NEXT 652DCU3 HDD복제기능탑재/도킹스테이션/2.5인치/3.5인치/백업/클론기능  마하링크'</li></ul> |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.7786 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el16")
# Run inference
preds = model("이지넷 NEXT-350U3 3.5 외장케이스/USB3.0 하드미포함  레알몰")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 4   | 9.6059 | 20  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |
| 4     | 50                    |
| 5     | 50                    |
| 6     | 50                    |
| 7     | 3                     |
| 8     | 50                    |
| 9     | 50                    |
| 10    | 7                     |
| 11    | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0125 | 1    | 0.497         | -               |
| 0.625  | 50   | 0.2348        | -               |
| 1.25   | 100  | 0.0733        | -               |
| 1.875  | 150  | 0.0254        | -               |
| 2.5    | 200  | 0.0165        | -               |
| 3.125  | 250  | 0.0122        | -               |
| 3.75   | 300  | 0.0021        | -               |
| 4.375  | 350  | 0.0024        | -               |
| 5.0    | 400  | 0.001         | -               |
| 5.625  | 450  | 0.0019        | -               |
| 6.25   | 500  | 0.0002        | -               |
| 6.875  | 550  | 0.0007        | -               |
| 7.5    | 600  | 0.0009        | -               |
| 8.125  | 650  | 0.0002        | -               |
| 8.75   | 700  | 0.0002        | -               |
| 9.375  | 750  | 0.0003        | -               |
| 10.0   | 800  | 0.0002        | -               |
| 10.625 | 850  | 0.0002        | -               |
| 11.25  | 900  | 0.0002        | -               |
| 11.875 | 950  | 0.0001        | -               |
| 12.5   | 1000 | 0.0001        | -               |
| 13.125 | 1050 | 0.0001        | -               |
| 13.75  | 1100 | 0.0001        | -               |
| 14.375 | 1150 | 0.0001        | -               |
| 15.0   | 1200 | 0.0001        | -               |
| 15.625 | 1250 | 0.0001        | -               |
| 16.25  | 1300 | 0.0001        | -               |
| 16.875 | 1350 | 0.0001        | -               |
| 17.5   | 1400 | 0.0001        | -               |
| 18.125 | 1450 | 0.0001        | -               |
| 18.75  | 1500 | 0.0001        | -               |
| 19.375 | 1550 | 0.0001        | -               |
| 20.0   | 1600 | 0.0001        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->