File size: 20,236 Bytes
647b255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 손톱스티커 워터데칼 신상 네일스티커 페디스티커젤네일스티 07_데일리C 네일 002_NB 866 LotteOn > 뷰티 > 네일 > 네일스티커/네일팁
LotteOn > 뷰티 > 네일 > 네일스티커/네일팁
- text: 오피아이 인피니트 샤인 베이스코트 LotteOn > 뷰티 > 네일 > 네일관리기기 > 전동네일관리기 LotteOn > 뷰티 > 네일
> 네일관리기기 > 전동네일관리기
- text: '[스킨알엑스][OPI][인피니트샤인]H009-Award for Best Nails go LotteOn > 뷰티 > 네일 > 네일관리기기
> 젤네일램프 LotteOn > 뷰티 > 네일 > 네일관리기기 > 젤네일램프'
- text: 아리따움 모디 컬러 네일즈 6ml 09호 크러쉬핑크 (#M)홈>화장품/미용>네일케어>매니큐어 Naverstore > 화장품/미용 >
네일케어 > 매니큐어
- text: 오피아이 인피니트 샤인2 매니큐어 N71 × 1개 LotteOn > 뷰티 > 네일 > 네일컬러 > 네일폴리쉬 LotteOn > 뷰티
> 네일 > 네일컬러 > 네일폴리쉬
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.6207243460764588
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | <ul><li>'미용기기 네일스티커 쫀득하고 이쁘고 쉬운 그랑블루 (#M)SSG.COM/스킨케어/클렌징/클렌징오일 ssg > 뷰티 > 스킨케어 > 클렌징 > 클렌징오일'</li><li>'DUW445476 네일아트 컬렉션 인조손톱 바네사 네일팁 34종 - 네일케어 디자인A10 LotteOn > 뷰티 > 네일케어 > 네일세트 > 네일세트 LotteOn > 뷰티 > 네일케어 > 네일세트 > 네일세트'</li><li>'데싱디바 매직프레스 로즈 체크 2009 매직프레스 로즈 체크 LotteOn > 뷰티 > 메이크업 > 립메이크업 > 립틴트 LotteOn > 뷰티 > 메이크업 > 립메이크업 > 립틴트'</li></ul> |
| 0 | <ul><li>'아이엑트리스 세라믹 오일푸셔 혼합색상 × 1개 LotteOn > 뷰티 > 네일 > 네일케어소품 LotteOn > 뷰티 > 네일 > 네일케어소품'</li><li>'오피아이 넌아세톤 리무버 빨강 30ml × 16개 LotteOn > 뷰티 > 네일 > 네일관리기기 > 전동네일관리기 LotteOn > 뷰티 > 네일 > 네일관리기기 > 전동네일관리기'</li><li>'오피아이 엑스퍼트 터치 젤네일 보라 리무버 450ml × 1개 LotteOn > 뷰티 > 네일 > 네일케어 > 네일리무버 LotteOn > 뷰티 > 네일 > 네일케어 > 네일리무버'</li></ul> |
| 2 | <ul><li>'럽스위치 네일 안티셉틱 손소독제 1000ml 1개 (#M)쿠팡 홈>뷰티>바디>핸드/풋/데오>핸드케어>손소독제 Coupang > 뷰티 > 바디 > 핸드/풋/데오 > 핸드케어 > 손소독제'</li><li>'OPI 영양제 스트랭쓰너 15ml OPI 케어 Gel Break NTR05 - BARELY BEIGE LotteOn > 뷰티 > 네일 > 네일케어 > 큐티클케어 LotteOn > 뷰티 > 네일 > 네일케어 > 큐티클케어'</li><li>'닥터네일 딥 세럼 3.3ml 16개 (#M)쿠팡 홈>뷰티>네일>큐티클/영양>손톱강화/영양 Coupang > 뷰티 > 네일 > 큐티클/영양 > 손톱강화/영양'</li></ul> |
| 1 | <ul><li>'디올 베르니 449 당상트 (#M)위메프 > 뷰티 > 네일케어 > 큐티클/영양 > 큐티클 오일 위메프 > 뷰티 > 네일케어 > 큐티클/영양 > 큐티클 오일'</li><li>'아지아 스마트 아이 충전식 바리깡 블랙_JP-150 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리'</li><li>'에코스타일러 프로페셔널 스타일링 젤 크리스탈 355ml × 1개 쿠팡 홈>선물스토어>생일>화장품>남성화장품>남성 헤어케어;Coupang > 뷰티 > 헤어 > 헤어스타일링 > 헤어젤;(#M)쿠팡 홈>생활용품>헤어/바디/세안>스타일링/케어/세트>헤어스타일링>헤어젤 Coupang > 뷰티 > 헤어 > 헤어스타일링 > 헤어젤'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.6207 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top2_test")
# Run inference
preds = model("아리따움 모디 컬러 네일즈 6ml 09호 크러쉬핑크 (#M)홈>화장품/미용>네일케어>매니큐어 Naverstore > 화장품/미용 > 네일케어 > 매니큐어")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 13 | 22.63 | 41 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0032 | 1 | 0.4439 | - |
| 0.1597 | 50 | 0.4539 | - |
| 0.3195 | 100 | 0.4205 | - |
| 0.4792 | 150 | 0.3968 | - |
| 0.6390 | 200 | 0.3406 | - |
| 0.7987 | 250 | 0.2811 | - |
| 0.9585 | 300 | 0.2458 | - |
| 1.1182 | 350 | 0.2219 | - |
| 1.2780 | 400 | 0.2013 | - |
| 1.4377 | 450 | 0.2022 | - |
| 1.5974 | 500 | 0.1964 | - |
| 1.7572 | 550 | 0.1879 | - |
| 1.9169 | 600 | 0.1804 | - |
| 2.0767 | 650 | 0.138 | - |
| 2.2364 | 700 | 0.0945 | - |
| 2.3962 | 750 | 0.0722 | - |
| 2.5559 | 800 | 0.0619 | - |
| 2.7157 | 850 | 0.0396 | - |
| 2.8754 | 900 | 0.0264 | - |
| 3.0351 | 950 | 0.0213 | - |
| 3.1949 | 1000 | 0.0144 | - |
| 3.3546 | 1050 | 0.0112 | - |
| 3.5144 | 1100 | 0.0114 | - |
| 3.6741 | 1150 | 0.0151 | - |
| 3.8339 | 1200 | 0.0142 | - |
| 3.9936 | 1250 | 0.0141 | - |
| 4.1534 | 1300 | 0.0115 | - |
| 4.3131 | 1350 | 0.0123 | - |
| 4.4728 | 1400 | 0.0119 | - |
| 4.6326 | 1450 | 0.0122 | - |
| 4.7923 | 1500 | 0.0143 | - |
| 4.9521 | 1550 | 0.0126 | - |
| 5.1118 | 1600 | 0.0113 | - |
| 5.2716 | 1650 | 0.011 | - |
| 5.4313 | 1700 | 0.0145 | - |
| 5.5911 | 1750 | 0.0107 | - |
| 5.7508 | 1800 | 0.0136 | - |
| 5.9105 | 1850 | 0.0124 | - |
| 6.0703 | 1900 | 0.0136 | - |
| 6.2300 | 1950 | 0.0123 | - |
| 6.3898 | 2000 | 0.0151 | - |
| 6.5495 | 2050 | 0.0128 | - |
| 6.7093 | 2100 | 0.0106 | - |
| 6.8690 | 2150 | 0.0122 | - |
| 7.0288 | 2200 | 0.0135 | - |
| 7.1885 | 2250 | 0.0118 | - |
| 7.3482 | 2300 | 0.0101 | - |
| 7.5080 | 2350 | 0.0078 | - |
| 7.6677 | 2400 | 0.0064 | - |
| 7.8275 | 2450 | 0.006 | - |
| 7.9872 | 2500 | 0.0067 | - |
| 8.1470 | 2550 | 0.0055 | - |
| 8.3067 | 2600 | 0.0057 | - |
| 8.4665 | 2650 | 0.0077 | - |
| 8.6262 | 2700 | 0.0043 | - |
| 8.7859 | 2750 | 0.0065 | - |
| 8.9457 | 2800 | 0.0086 | - |
| 9.1054 | 2850 | 0.0059 | - |
| 9.2652 | 2900 | 0.0063 | - |
| 9.4249 | 2950 | 0.0053 | - |
| 9.5847 | 3000 | 0.0073 | - |
| 9.7444 | 3050 | 0.0056 | - |
| 9.9042 | 3100 | 0.0075 | - |
| 10.0639 | 3150 | 0.007 | - |
| 10.2236 | 3200 | 0.0049 | - |
| 10.3834 | 3250 | 0.0053 | - |
| 10.5431 | 3300 | 0.0016 | - |
| 10.7029 | 3350 | 0.0 | - |
| 10.8626 | 3400 | 0.0 | - |
| 11.0224 | 3450 | 0.0002 | - |
| 11.1821 | 3500 | 0.0031 | - |
| 11.3419 | 3550 | 0.0057 | - |
| 11.5016 | 3600 | 0.0029 | - |
| 11.6613 | 3650 | 0.0006 | - |
| 11.8211 | 3700 | 0.0 | - |
| 11.9808 | 3750 | 0.0004 | - |
| 12.1406 | 3800 | 0.0 | - |
| 12.3003 | 3850 | 0.0 | - |
| 12.4601 | 3900 | 0.0 | - |
| 12.6198 | 3950 | 0.0 | - |
| 12.7796 | 4000 | 0.0 | - |
| 12.9393 | 4050 | 0.0 | - |
| 13.0990 | 4100 | 0.0 | - |
| 13.2588 | 4150 | 0.0 | - |
| 13.4185 | 4200 | 0.0 | - |
| 13.5783 | 4250 | 0.0 | - |
| 13.7380 | 4300 | 0.0 | - |
| 13.8978 | 4350 | 0.0 | - |
| 14.0575 | 4400 | 0.0 | - |
| 14.2173 | 4450 | 0.0012 | - |
| 14.3770 | 4500 | 0.0004 | - |
| 14.5367 | 4550 | 0.0002 | - |
| 14.6965 | 4600 | 0.0 | - |
| 14.8562 | 4650 | 0.0 | - |
| 15.0160 | 4700 | 0.0001 | - |
| 15.1757 | 4750 | 0.0005 | - |
| 15.3355 | 4800 | 0.0001 | - |
| 15.4952 | 4850 | 0.0 | - |
| 15.6550 | 4900 | 0.0001 | - |
| 15.8147 | 4950 | 0.0 | - |
| 15.9744 | 5000 | 0.0 | - |
| 16.1342 | 5050 | 0.0 | - |
| 16.2939 | 5100 | 0.0 | - |
| 16.4537 | 5150 | 0.0 | - |
| 16.6134 | 5200 | 0.0 | - |
| 16.7732 | 5250 | 0.0 | - |
| 16.9329 | 5300 | 0.0 | - |
| 17.0927 | 5350 | 0.0 | - |
| 17.2524 | 5400 | 0.0 | - |
| 17.4121 | 5450 | 0.0 | - |
| 17.5719 | 5500 | 0.0 | - |
| 17.7316 | 5550 | 0.0 | - |
| 17.8914 | 5600 | 0.0 | - |
| 18.0511 | 5650 | 0.0 | - |
| 18.2109 | 5700 | 0.0 | - |
| 18.3706 | 5750 | 0.0 | - |
| 18.5304 | 5800 | 0.0 | - |
| 18.6901 | 5850 | 0.0 | - |
| 18.8498 | 5900 | 0.0 | - |
| 19.0096 | 5950 | 0.0 | - |
| 19.1693 | 6000 | 0.0 | - |
| 19.3291 | 6050 | 0.0 | - |
| 19.4888 | 6100 | 0.0 | - |
| 19.6486 | 6150 | 0.0 | - |
| 19.8083 | 6200 | 0.0 | - |
| 19.9681 | 6250 | 0.0 | - |
| 20.1278 | 6300 | 0.0 | - |
| 20.2875 | 6350 | 0.0 | - |
| 20.4473 | 6400 | 0.0 | - |
| 20.6070 | 6450 | 0.0 | - |
| 20.7668 | 6500 | 0.0 | - |
| 20.9265 | 6550 | 0.0 | - |
| 21.0863 | 6600 | 0.0 | - |
| 21.2460 | 6650 | 0.0 | - |
| 21.4058 | 6700 | 0.0 | - |
| 21.5655 | 6750 | 0.0 | - |
| 21.7252 | 6800 | 0.0 | - |
| 21.8850 | 6850 | 0.0 | - |
| 22.0447 | 6900 | 0.0 | - |
| 22.2045 | 6950 | 0.0 | - |
| 22.3642 | 7000 | 0.0 | - |
| 22.5240 | 7050 | 0.0 | - |
| 22.6837 | 7100 | 0.0 | - |
| 22.8435 | 7150 | 0.0 | - |
| 23.0032 | 7200 | 0.0 | - |
| 23.1629 | 7250 | 0.0 | - |
| 23.3227 | 7300 | 0.0 | - |
| 23.4824 | 7350 | 0.0 | - |
| 23.6422 | 7400 | 0.0 | - |
| 23.8019 | 7450 | 0.0 | - |
| 23.9617 | 7500 | 0.0 | - |
| 24.1214 | 7550 | 0.0 | - |
| 24.2812 | 7600 | 0.0 | - |
| 24.4409 | 7650 | 0.0 | - |
| 24.6006 | 7700 | 0.0 | - |
| 24.7604 | 7750 | 0.0 | - |
| 24.9201 | 7800 | 0.0 | - |
| 25.0799 | 7850 | 0.0 | - |
| 25.2396 | 7900 | 0.0 | - |
| 25.3994 | 7950 | 0.0 | - |
| 25.5591 | 8000 | 0.0 | - |
| 25.7188 | 8050 | 0.0 | - |
| 25.8786 | 8100 | 0.0 | - |
| 26.0383 | 8150 | 0.0 | - |
| 26.1981 | 8200 | 0.0 | - |
| 26.3578 | 8250 | 0.0 | - |
| 26.5176 | 8300 | 0.0 | - |
| 26.6773 | 8350 | 0.0 | - |
| 26.8371 | 8400 | 0.0 | - |
| 26.9968 | 8450 | 0.0 | - |
| 27.1565 | 8500 | 0.0 | - |
| 27.3163 | 8550 | 0.0 | - |
| 27.4760 | 8600 | 0.0 | - |
| 27.6358 | 8650 | 0.0 | - |
| 27.7955 | 8700 | 0.0 | - |
| 27.9553 | 8750 | 0.0 | - |
| 28.1150 | 8800 | 0.0 | - |
| 28.2748 | 8850 | 0.0 | - |
| 28.4345 | 8900 | 0.0 | - |
| 28.5942 | 8950 | 0.0 | - |
| 28.7540 | 9000 | 0.0 | - |
| 28.9137 | 9050 | 0.0 | - |
| 29.0735 | 9100 | 0.0 | - |
| 29.2332 | 9150 | 0.0 | - |
| 29.3930 | 9200 | 0.0 | - |
| 29.5527 | 9250 | 0.0 | - |
| 29.7125 | 9300 | 0.0 | - |
| 29.8722 | 9350 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |