File size: 20,236 Bytes
647b255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 손톱스티커 워터데칼 신상 네일스티커 페디스티커젤네일스티 07_데일리C 네일 002_NB 866 LotteOn > 뷰티 > 네일 > 네일스티커/네일팁
    LotteOn > 뷰티 > 네일 > 네일스티커/네일팁
- text: 오피아이 인피니트 샤인 베이스코트  LotteOn > 뷰티 > 네일 > 네일관리기기 > 전동네일관리기 LotteOn > 뷰티 > 네일
    > 네일관리기기 > 전동네일관리기
- text: '[스킨알엑스][OPI][인피니트샤인]H009-Award for Best Nails go  LotteOn > 뷰티 > 네일 > 네일관리기기
    > 젤네일램프 LotteOn > 뷰티 > 네일 > 네일관리기기 > 젤네일램프'
- text: 아리따움 모디 컬러 네일즈 6ml 09 크러쉬핑크 (#M)홈>화장품/미용>네일케어>매니큐어 Naverstore > 화장품/미용 >
    네일케어 > 매니큐어
- text: 오피아이 인피니트 샤인2 매니큐어 N71 × 1 LotteOn > 뷰티 > 네일 > 네일컬러 > 네일폴리쉬 LotteOn > 뷰티
    > 네일 > 네일컬러 > 네일폴리쉬
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.6207243460764588
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                           |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | <ul><li>'미용기기 네일스티커 쫀득하고 이쁘고 쉬운 그랑블루 (#M)SSG.COM/스킨케어/클렌징/클렌징오일 ssg > 뷰티 > 스킨케어 > 클렌징 > 클렌징오일'</li><li>'DUW445476 네일아트 컬렉션 인조손톱 바네사 네일팁 34종  - 네일케어  디자인A10 LotteOn > 뷰티 > 네일케어 > 네일세트 > 네일세트 LotteOn > 뷰티 > 네일케어 > 네일세트 > 네일세트'</li><li>'데싱디바 매직프레스 로즈 체크 2009 매직프레스 로즈 체크 LotteOn > 뷰티 > 메이크업 > 립메이크업 > 립틴트 LotteOn > 뷰티 > 메이크업 > 립메이크업 > 립틴트'</li></ul>                                                                         |
| 0     | <ul><li>'아이엑트리스 세라믹 오일푸셔 혼합색상 × 1개 LotteOn > 뷰티 > 네일 > 네일케어소품 LotteOn > 뷰티 > 네일 > 네일케어소품'</li><li>'오피아이 넌아세톤 리무버 빨강 30ml × 16개 LotteOn > 뷰티 > 네일 > 네일관리기기 > 전동네일관리기 LotteOn > 뷰티 > 네일 > 네일관리기기 > 전동네일관리기'</li><li>'오피아이 엑스퍼트 터치 젤네일 보라 리무버 450ml × 1개 LotteOn > 뷰티 > 네일 > 네일케어 > 네일리무버 LotteOn > 뷰티 > 네일 > 네일케어 > 네일리무버'</li></ul>                                                                                                 |
| 2     | <ul><li>'럽스위치 네일 안티셉틱 손소독제 1000ml 1개 (#M)쿠팡 홈>뷰티>바디>핸드/풋/데오>핸드케어>손소독제 Coupang > 뷰티 > 바디 > 핸드/풋/데오 > 핸드케어 > 손소독제'</li><li>'OPI 영양제 스트랭쓰너 15ml OPI  케어  Gel Break NTR05 - BARELY BEIGE LotteOn > 뷰티 > 네일 > 네일케어 > 큐티클케어 LotteOn > 뷰티 > 네일 > 네일케어 > 큐티클케어'</li><li>'닥터네일 딥 세럼 3.3ml 16개 (#M)쿠팡 홈>뷰티>네일>큐티클/영양>손톱강화/영양 Coupang > 뷰티 > 네일 > 큐티클/영양 > 손톱강화/영양'</li></ul>                                                                 |
| 1     | <ul><li>'디올 베르니 449 당상트 (#M)위메프 > 뷰티 > 네일케어 > 큐티클/영양 > 큐티클 오일 위메프 > 뷰티 > 네일케어 > 큐티클/영양 > 큐티클 오일'</li><li>'아지아 스마트 아이 충전식 바리깡 블랙_JP-150 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리'</li><li>'에코스타일러 프로페셔널 스타일링 젤 크리스탈 355ml × 1개 쿠팡 홈>선물스토어>생일>화장품>남성화장품>남성 헤어케어;Coupang > 뷰티 > 헤어 > 헤어스타일링 > 헤어젤;(#M)쿠팡 홈>생활용품>헤어/바디/세안>스타일링/케어/세트>헤어스타일링>헤어젤 Coupang > 뷰티 > 헤어 > 헤어스타일링 > 헤어젤'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.6207   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top2_test")
# Run inference
preds = model("아리따움 모디 컬러 네일즈 6ml 09호 크러쉬핑크 (#M)홈>화장품/미용>네일케어>매니큐어 Naverstore > 화장품/미용 > 네일케어 > 매니큐어")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 13  | 22.63  | 41  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0032  | 1    | 0.4439        | -               |
| 0.1597  | 50   | 0.4539        | -               |
| 0.3195  | 100  | 0.4205        | -               |
| 0.4792  | 150  | 0.3968        | -               |
| 0.6390  | 200  | 0.3406        | -               |
| 0.7987  | 250  | 0.2811        | -               |
| 0.9585  | 300  | 0.2458        | -               |
| 1.1182  | 350  | 0.2219        | -               |
| 1.2780  | 400  | 0.2013        | -               |
| 1.4377  | 450  | 0.2022        | -               |
| 1.5974  | 500  | 0.1964        | -               |
| 1.7572  | 550  | 0.1879        | -               |
| 1.9169  | 600  | 0.1804        | -               |
| 2.0767  | 650  | 0.138         | -               |
| 2.2364  | 700  | 0.0945        | -               |
| 2.3962  | 750  | 0.0722        | -               |
| 2.5559  | 800  | 0.0619        | -               |
| 2.7157  | 850  | 0.0396        | -               |
| 2.8754  | 900  | 0.0264        | -               |
| 3.0351  | 950  | 0.0213        | -               |
| 3.1949  | 1000 | 0.0144        | -               |
| 3.3546  | 1050 | 0.0112        | -               |
| 3.5144  | 1100 | 0.0114        | -               |
| 3.6741  | 1150 | 0.0151        | -               |
| 3.8339  | 1200 | 0.0142        | -               |
| 3.9936  | 1250 | 0.0141        | -               |
| 4.1534  | 1300 | 0.0115        | -               |
| 4.3131  | 1350 | 0.0123        | -               |
| 4.4728  | 1400 | 0.0119        | -               |
| 4.6326  | 1450 | 0.0122        | -               |
| 4.7923  | 1500 | 0.0143        | -               |
| 4.9521  | 1550 | 0.0126        | -               |
| 5.1118  | 1600 | 0.0113        | -               |
| 5.2716  | 1650 | 0.011         | -               |
| 5.4313  | 1700 | 0.0145        | -               |
| 5.5911  | 1750 | 0.0107        | -               |
| 5.7508  | 1800 | 0.0136        | -               |
| 5.9105  | 1850 | 0.0124        | -               |
| 6.0703  | 1900 | 0.0136        | -               |
| 6.2300  | 1950 | 0.0123        | -               |
| 6.3898  | 2000 | 0.0151        | -               |
| 6.5495  | 2050 | 0.0128        | -               |
| 6.7093  | 2100 | 0.0106        | -               |
| 6.8690  | 2150 | 0.0122        | -               |
| 7.0288  | 2200 | 0.0135        | -               |
| 7.1885  | 2250 | 0.0118        | -               |
| 7.3482  | 2300 | 0.0101        | -               |
| 7.5080  | 2350 | 0.0078        | -               |
| 7.6677  | 2400 | 0.0064        | -               |
| 7.8275  | 2450 | 0.006         | -               |
| 7.9872  | 2500 | 0.0067        | -               |
| 8.1470  | 2550 | 0.0055        | -               |
| 8.3067  | 2600 | 0.0057        | -               |
| 8.4665  | 2650 | 0.0077        | -               |
| 8.6262  | 2700 | 0.0043        | -               |
| 8.7859  | 2750 | 0.0065        | -               |
| 8.9457  | 2800 | 0.0086        | -               |
| 9.1054  | 2850 | 0.0059        | -               |
| 9.2652  | 2900 | 0.0063        | -               |
| 9.4249  | 2950 | 0.0053        | -               |
| 9.5847  | 3000 | 0.0073        | -               |
| 9.7444  | 3050 | 0.0056        | -               |
| 9.9042  | 3100 | 0.0075        | -               |
| 10.0639 | 3150 | 0.007         | -               |
| 10.2236 | 3200 | 0.0049        | -               |
| 10.3834 | 3250 | 0.0053        | -               |
| 10.5431 | 3300 | 0.0016        | -               |
| 10.7029 | 3350 | 0.0           | -               |
| 10.8626 | 3400 | 0.0           | -               |
| 11.0224 | 3450 | 0.0002        | -               |
| 11.1821 | 3500 | 0.0031        | -               |
| 11.3419 | 3550 | 0.0057        | -               |
| 11.5016 | 3600 | 0.0029        | -               |
| 11.6613 | 3650 | 0.0006        | -               |
| 11.8211 | 3700 | 0.0           | -               |
| 11.9808 | 3750 | 0.0004        | -               |
| 12.1406 | 3800 | 0.0           | -               |
| 12.3003 | 3850 | 0.0           | -               |
| 12.4601 | 3900 | 0.0           | -               |
| 12.6198 | 3950 | 0.0           | -               |
| 12.7796 | 4000 | 0.0           | -               |
| 12.9393 | 4050 | 0.0           | -               |
| 13.0990 | 4100 | 0.0           | -               |
| 13.2588 | 4150 | 0.0           | -               |
| 13.4185 | 4200 | 0.0           | -               |
| 13.5783 | 4250 | 0.0           | -               |
| 13.7380 | 4300 | 0.0           | -               |
| 13.8978 | 4350 | 0.0           | -               |
| 14.0575 | 4400 | 0.0           | -               |
| 14.2173 | 4450 | 0.0012        | -               |
| 14.3770 | 4500 | 0.0004        | -               |
| 14.5367 | 4550 | 0.0002        | -               |
| 14.6965 | 4600 | 0.0           | -               |
| 14.8562 | 4650 | 0.0           | -               |
| 15.0160 | 4700 | 0.0001        | -               |
| 15.1757 | 4750 | 0.0005        | -               |
| 15.3355 | 4800 | 0.0001        | -               |
| 15.4952 | 4850 | 0.0           | -               |
| 15.6550 | 4900 | 0.0001        | -               |
| 15.8147 | 4950 | 0.0           | -               |
| 15.9744 | 5000 | 0.0           | -               |
| 16.1342 | 5050 | 0.0           | -               |
| 16.2939 | 5100 | 0.0           | -               |
| 16.4537 | 5150 | 0.0           | -               |
| 16.6134 | 5200 | 0.0           | -               |
| 16.7732 | 5250 | 0.0           | -               |
| 16.9329 | 5300 | 0.0           | -               |
| 17.0927 | 5350 | 0.0           | -               |
| 17.2524 | 5400 | 0.0           | -               |
| 17.4121 | 5450 | 0.0           | -               |
| 17.5719 | 5500 | 0.0           | -               |
| 17.7316 | 5550 | 0.0           | -               |
| 17.8914 | 5600 | 0.0           | -               |
| 18.0511 | 5650 | 0.0           | -               |
| 18.2109 | 5700 | 0.0           | -               |
| 18.3706 | 5750 | 0.0           | -               |
| 18.5304 | 5800 | 0.0           | -               |
| 18.6901 | 5850 | 0.0           | -               |
| 18.8498 | 5900 | 0.0           | -               |
| 19.0096 | 5950 | 0.0           | -               |
| 19.1693 | 6000 | 0.0           | -               |
| 19.3291 | 6050 | 0.0           | -               |
| 19.4888 | 6100 | 0.0           | -               |
| 19.6486 | 6150 | 0.0           | -               |
| 19.8083 | 6200 | 0.0           | -               |
| 19.9681 | 6250 | 0.0           | -               |
| 20.1278 | 6300 | 0.0           | -               |
| 20.2875 | 6350 | 0.0           | -               |
| 20.4473 | 6400 | 0.0           | -               |
| 20.6070 | 6450 | 0.0           | -               |
| 20.7668 | 6500 | 0.0           | -               |
| 20.9265 | 6550 | 0.0           | -               |
| 21.0863 | 6600 | 0.0           | -               |
| 21.2460 | 6650 | 0.0           | -               |
| 21.4058 | 6700 | 0.0           | -               |
| 21.5655 | 6750 | 0.0           | -               |
| 21.7252 | 6800 | 0.0           | -               |
| 21.8850 | 6850 | 0.0           | -               |
| 22.0447 | 6900 | 0.0           | -               |
| 22.2045 | 6950 | 0.0           | -               |
| 22.3642 | 7000 | 0.0           | -               |
| 22.5240 | 7050 | 0.0           | -               |
| 22.6837 | 7100 | 0.0           | -               |
| 22.8435 | 7150 | 0.0           | -               |
| 23.0032 | 7200 | 0.0           | -               |
| 23.1629 | 7250 | 0.0           | -               |
| 23.3227 | 7300 | 0.0           | -               |
| 23.4824 | 7350 | 0.0           | -               |
| 23.6422 | 7400 | 0.0           | -               |
| 23.8019 | 7450 | 0.0           | -               |
| 23.9617 | 7500 | 0.0           | -               |
| 24.1214 | 7550 | 0.0           | -               |
| 24.2812 | 7600 | 0.0           | -               |
| 24.4409 | 7650 | 0.0           | -               |
| 24.6006 | 7700 | 0.0           | -               |
| 24.7604 | 7750 | 0.0           | -               |
| 24.9201 | 7800 | 0.0           | -               |
| 25.0799 | 7850 | 0.0           | -               |
| 25.2396 | 7900 | 0.0           | -               |
| 25.3994 | 7950 | 0.0           | -               |
| 25.5591 | 8000 | 0.0           | -               |
| 25.7188 | 8050 | 0.0           | -               |
| 25.8786 | 8100 | 0.0           | -               |
| 26.0383 | 8150 | 0.0           | -               |
| 26.1981 | 8200 | 0.0           | -               |
| 26.3578 | 8250 | 0.0           | -               |
| 26.5176 | 8300 | 0.0           | -               |
| 26.6773 | 8350 | 0.0           | -               |
| 26.8371 | 8400 | 0.0           | -               |
| 26.9968 | 8450 | 0.0           | -               |
| 27.1565 | 8500 | 0.0           | -               |
| 27.3163 | 8550 | 0.0           | -               |
| 27.4760 | 8600 | 0.0           | -               |
| 27.6358 | 8650 | 0.0           | -               |
| 27.7955 | 8700 | 0.0           | -               |
| 27.9553 | 8750 | 0.0           | -               |
| 28.1150 | 8800 | 0.0           | -               |
| 28.2748 | 8850 | 0.0           | -               |
| 28.4345 | 8900 | 0.0           | -               |
| 28.5942 | 8950 | 0.0           | -               |
| 28.7540 | 9000 | 0.0           | -               |
| 28.9137 | 9050 | 0.0           | -               |
| 29.0735 | 9100 | 0.0           | -               |
| 29.2332 | 9150 | 0.0           | -               |
| 29.3930 | 9200 | 0.0           | -               |
| 29.5527 | 9250 | 0.0           | -               |
| 29.7125 | 9300 | 0.0           | -               |
| 29.8722 | 9350 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->