File size: 10,568 Bytes
07ee4c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 디스커버리익스페디션키즈 디스커버리 키즈 로고 래쉬가드  출산/육아 > 수영복/용품 > 남아수영복
- text: 뉴발란스키즈 뉴발란스 키즈 Beach Lounge 래쉬가드 유니 2in1 수영복 NK9RE2110U  출산/육아 > 수영복/용품 >
    남아수영복
- text:  아동 수경 일반렌즈 일본 V424J LV 출산/육아 > 수영복/용품 > 수경/수모/귀마개
- text: 벤디스 아동 남아 여아 래쉬가드 세트 유아 수영복 P208 28.에스닉후드 비치 가디건 S207_오렌지_공용_7호 출산/육아 > 수영복/용품
    > 남아수영복
- text: 비치는 반투명 수영장 방수 비치백 목욕가방 3종세트 상품선택_핑크세트 출산/육아 > 수영복/용품 > 수영가방/비치백
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 1.0
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                      |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0   | <ul><li>'플랩캡 모자 자외선차단 수영모자 유아 아동 공용 UV모자 C_핑크_M 출산/육아 > 수영복/용품 > 수경/수모/귀마개'</li><li>'아기물안경 유아물안경 성인용 CA01 화이트 출산/육아 > 수영복/용품 > 수경/수모/귀마개'</li><li>'UV 플랩캡 아기 유아 아동 수영모자 버킷햇 해변 워터파크 자외선차단 UV플랩캡_그레이_S(3세이하) 출산/육아 > 수영복/용품 > 수경/수모/귀마개'</li></ul>                             |
| 2.0   | <ul><li>'어린이 수영가방 유아 비치백 여아 유치원 캐치티니핑 C.수영모자_47_로이도이 소프트_화이트/56 (770297) 출산/육아 > 수영복/용품 > 수영가방/비치백'</li><li>'어린이수영가방 수영장가방 비치백 유아 아동 유치원 09.엘오엘_LOL 레트로 비치 핸드백(핑크) 출산/육아 > 수영복/용품 > 수영가방/비치백'</li><li>'물빠지는 방수 메쉬 목욕가방 스파백_33.NCCSB11_블랙 출산/육아 > 수영복/용품 > 수영가방/비치백'</li></ul> |
| 0.0   | <ul><li>'레노마 아레나 슬라임 아동 4부 남아동수영복 A3BB1BF02  출산/육아 > 수영복/용품 > 남아수영복'</li><li>'스플래쉬어바웃 사계절 키즈래쉬가드 쇼티 웨트슈트 남아래쉬가드 남아수영복 키즈수영복 터그보츠_XXL(8-10세) 출산/육아 > 수영복/용품 > 남아수영복'</li><li>'디스커버리익스페디션키즈 키즈 로고 래쉬가드 L MINT  출산/육아 > 수영복/용품 > 남아수영복'</li></ul>                                |
| 3.0   | <ul><li>'아레나 초등여아 실내수영복 초등학생 키즈 주니어 4부 5부 반신 생존수영A3FG1GL22 핑크_70 출산/육아 > 수영복/용품 > 여아수영복'</li><li>'뿔공룡 유아 래쉬가드(90-120) 204119 피치90 출산/육아 > 수영복/용품 > 여아수영복'</li><li>'블루독 하트전판레쉬가드세트 24940 621 52  출산/육아 > 수영복/용품 > 여아수영복'</li></ul>                                             |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 1.0      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc8")
# Run inference
preds = model("뷰 아동 수경 일반렌즈 일본 V424J LV 출산/육아 > 수영복/용품 > 수경/수모/귀마개")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 7   | 13.5607 | 24  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 70                    |
| 1.0   | 70                    |
| 2.0   | 70                    |
| 3.0   | 70                    |

### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0182  | 1    | 0.4886        | -               |
| 0.9091  | 50   | 0.4981        | -               |
| 1.8182  | 100  | 0.3363        | -               |
| 2.7273  | 150  | 0.0279        | -               |
| 3.6364  | 200  | 0.0001        | -               |
| 4.5455  | 250  | 0.0           | -               |
| 5.4545  | 300  | 0.0           | -               |
| 6.3636  | 350  | 0.0           | -               |
| 7.2727  | 400  | 0.0           | -               |
| 8.1818  | 450  | 0.0           | -               |
| 9.0909  | 500  | 0.0           | -               |
| 10.0    | 550  | 0.0           | -               |
| 10.9091 | 600  | 0.0           | -               |
| 11.8182 | 650  | 0.0           | -               |
| 12.7273 | 700  | 0.0           | -               |
| 13.6364 | 750  | 0.0           | -               |
| 14.5455 | 800  | 0.0           | -               |
| 15.4545 | 850  | 0.0           | -               |
| 16.3636 | 900  | 0.0           | -               |
| 17.2727 | 950  | 0.0           | -               |
| 18.1818 | 1000 | 0.0           | -               |
| 19.0909 | 1050 | 0.0           | -               |
| 20.0    | 1100 | 0.0           | -               |
| 20.9091 | 1150 | 0.0           | -               |
| 21.8182 | 1200 | 0.0           | -               |
| 22.7273 | 1250 | 0.0           | -               |
| 23.6364 | 1300 | 0.0           | -               |
| 24.5455 | 1350 | 0.0           | -               |
| 25.4545 | 1400 | 0.0           | -               |
| 26.3636 | 1450 | 0.0           | -               |
| 27.2727 | 1500 | 0.0           | -               |
| 28.1818 | 1550 | 0.0           | -               |
| 29.0909 | 1600 | 0.0           | -               |
| 30.0    | 1650 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->