File size: 10,568 Bytes
07ee4c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 디스커버리익스페디션키즈 디스커버리 키즈 로고 래쉬가드 출산/육아 > 수영복/용품 > 남아수영복
- text: 뉴발란스키즈 뉴발란스 키즈 Beach Lounge 래쉬가드 유니 2in1 수영복 NK9RE2110U 출산/육아 > 수영복/용품 >
남아수영복
- text: 뷰 아동 수경 일반렌즈 일본 V424J LV 출산/육아 > 수영복/용품 > 수경/수모/귀마개
- text: 벤디스 아동 남아 여아 래쉬가드 세트 유아 수영복 P208 28.에스닉후드 비치 가디건 S207_오렌지_공용_7호 출산/육아 > 수영복/용품
> 남아수영복
- text: 비치는 반투명 수영장 방수 비치백 목욕가방 3종세트 상품선택_핑크세트 출산/육아 > 수영복/용품 > 수영가방/비치백
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 | <ul><li>'플랩캡 모자 자외선차단 수영모자 유아 아동 공용 UV모자 C_핑크_M 출산/육아 > 수영복/용품 > 수경/수모/귀마개'</li><li>'아기물안경 유아물안경 성인용 CA01 화이트 출산/육아 > 수영복/용품 > 수경/수모/귀마개'</li><li>'UV 플랩캡 아기 유아 아동 수영모자 버킷햇 해변 워터파크 자외선차단 UV플랩캡_그레이_S(3세이하) 출산/육아 > 수영복/용품 > 수경/수모/귀마개'</li></ul> |
| 2.0 | <ul><li>'어린이 수영가방 유아 비치백 여아 유치원 캐치티니핑 C.수영모자_47_로이도이 소프트_화이트/56 (770297) 출산/육아 > 수영복/용품 > 수영가방/비치백'</li><li>'어린이수영가방 수영장가방 비치백 유아 아동 유치원 09.엘오엘_LOL 레트로 비치 핸드백(핑크) 출산/육아 > 수영복/용품 > 수영가방/비치백'</li><li>'물빠지는 방수 메쉬 목욕가방 스파백_33.NCCSB11_블랙 출산/육아 > 수영복/용품 > 수영가방/비치백'</li></ul> |
| 0.0 | <ul><li>'레노마 아레나 슬라임 아동 4부 남아동수영복 A3BB1BF02 출산/육아 > 수영복/용품 > 남아수영복'</li><li>'스플래쉬어바웃 사계절 키즈래쉬가드 쇼티 웨트슈트 남아래쉬가드 남아수영복 키즈수영복 터그보츠_XXL(8-10세) 출산/육아 > 수영복/용품 > 남아수영복'</li><li>'디스커버리익스페디션키즈 키즈 로고 래쉬가드 L MINT 출산/육아 > 수영복/용품 > 남아수영복'</li></ul> |
| 3.0 | <ul><li>'아레나 초등여아 실내수영복 초등학생 키즈 주니어 4부 5부 반신 생존수영A3FG1GL22 핑크_70 출산/육아 > 수영복/용품 > 여아수영복'</li><li>'뿔공룡 유아 래쉬가드(90-120) 204119 피치90 출산/육아 > 수영복/용품 > 여아수영복'</li><li>'블루독 하트전판레쉬가드세트 24940 621 52 출산/육아 > 수영복/용품 > 여아수영복'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc8")
# Run inference
preds = model("뷰 아동 수경 일반렌즈 일본 V424J LV 출산/육아 > 수영복/용품 > 수경/수모/귀마개")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 7 | 13.5607 | 24 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0182 | 1 | 0.4886 | - |
| 0.9091 | 50 | 0.4981 | - |
| 1.8182 | 100 | 0.3363 | - |
| 2.7273 | 150 | 0.0279 | - |
| 3.6364 | 200 | 0.0001 | - |
| 4.5455 | 250 | 0.0 | - |
| 5.4545 | 300 | 0.0 | - |
| 6.3636 | 350 | 0.0 | - |
| 7.2727 | 400 | 0.0 | - |
| 8.1818 | 450 | 0.0 | - |
| 9.0909 | 500 | 0.0 | - |
| 10.0 | 550 | 0.0 | - |
| 10.9091 | 600 | 0.0 | - |
| 11.8182 | 650 | 0.0 | - |
| 12.7273 | 700 | 0.0 | - |
| 13.6364 | 750 | 0.0 | - |
| 14.5455 | 800 | 0.0 | - |
| 15.4545 | 850 | 0.0 | - |
| 16.3636 | 900 | 0.0 | - |
| 17.2727 | 950 | 0.0 | - |
| 18.1818 | 1000 | 0.0 | - |
| 19.0909 | 1050 | 0.0 | - |
| 20.0 | 1100 | 0.0 | - |
| 20.9091 | 1150 | 0.0 | - |
| 21.8182 | 1200 | 0.0 | - |
| 22.7273 | 1250 | 0.0 | - |
| 23.6364 | 1300 | 0.0 | - |
| 24.5455 | 1350 | 0.0 | - |
| 25.4545 | 1400 | 0.0 | - |
| 26.3636 | 1450 | 0.0 | - |
| 27.2727 | 1500 | 0.0 | - |
| 28.1818 | 1550 | 0.0 | - |
| 29.0909 | 1600 | 0.0 | - |
| 30.0 | 1650 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |