File size: 9,757 Bytes
8ff3ecc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 세이코 SBTR SBTR011 전용 힐링쉴드 시계보호필름 기스방지 유리보호필름 31평면 스타샵
- text: 시계줄 교체공구 스프링툴바/메탈,가죽밴드 변경도구/시계줄질도구 스프링바툴 멀티형 올리브tree
- text: 오메가호환 시계줄 스트랩 가죽 시계 체인 12 OMJ-브라운 화이트 라인 + 실버_20mm 더블드래곤(Double dragon)
- text: Uhgbsd 가죽 스트랩 VC 바쉐론 콘스탄틴 시계 호환 남성 액세서리 19mm 20mm 22mm 1_10 Black Gold Fold
    Bk 시구왕씨
- text: 디젤 DZ4316 DZ7395 7305 4209 4215  스테인레스 스틸 시계 호환용 남성용 메탈 솔리드 밴드 24mm 30mm
    04 B Black_05 30mm 아이스박스(ICEBOX)
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.5793723141033988
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                  |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0   | <ul><li>'카시오 DW5600 시계 호환 16mm 러버 워치 밴드 실리콘 스트랩 우레탄 시계줄 옐로우 블랙 A_16mm 로움'</li><li>'갤럭시핏2 스트랩 실리콘 밴드 민트 보미헤안랩소디'</li><li>'로이드 어썸픽 소형 메쉬밴드 (2종 택 1) LL2B19611X LL2B19611XMG 로즈골드 세컨드플랜'</li></ul>                                                                           |
| 3.0   | <ul><li>'BOBO BIRD 네이비 블루 커플 손목 시계 연인 나무 쿼츠 맞춤형 각인 최고 럭셔리 브랜드 여성용 2.Paper Box 2 Woman 아더월드'</li><li>'캐주얼남녀손목시계 남자시계 폭발적인 벨트 테리어 시계 유럽 및 미국 시계선물 여자시계 Grey 리마113'</li><li>'남녀 커플 시계 SCRRJU 스테인레스 스틸 밴드 방수 연인 Se 패션 캐주얼 손목 선물 09 9 홀릭스'</li></ul>                           |
| 4.0   | <ul><li>'[프레드릭콘스탄트](신세계본점) FC-330MC4P6 클래식 문페이즈  주식회사 에스에스지닷컴'</li><li>'[다양한선물]순토 코어 올블랙 레귤러블랙 코어블랙레드 순토5 WHR 모음 시리즈 선택01.SS014279010 순토코어올블랙 스타샵'</li><li>'헬스공부타이머 집중공부타이머 요리 낮잠 여가 시간관리 알람 큐브 SW9EF763 15-60분 화이트 현대몰'</li></ul>                                        |
| 2.0   | <ul><li>'SUNOEL 3기압 5기압 방수 어린이 초등학생 전자 손목시계 모음  SUNOEL'</li><li>'손목시계쇼핑몰 아동용손목시계(16-5A) 손목시계대량  기프트한국'</li><li>'어린이 손목시계 초등학생 시계 키즈 전자시계 유아 스마트워치 남아 여아  제이에이취'</li></ul>                                                                                                 |
| 1.0   | <ul><li>'제작 빈 핀 버튼 메이커 부품 기계 용품 세트 25mm 32mm 37mm 44mm 50mm 56mm 58mm 50 개 [1]50sets_@#@[7]58mm 캐롤스하우스'</li><li>'무소음 무브먼트 시계 부품 모터 바늘 공예 DIY 선택D시계판_거북이 제이릴'</li><li>'시계공구 기타 야마하 YZF R125 R 125 YZFR125 20082013 바이크 오토바이 핸드가드 실드 핸드 가드 보호대 앞유리 07 Green 유비즈엘'</li></ul> |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.5794 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac6")
# Run inference
preds = model("세이코 SBTR SBTR011 전용 힐링쉴드 시계보호필름 기스방지 유리보호필름 31평면 스타샵")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 3   | 10.9107 | 22  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 24                    |
| 3.0   | 50                    |
| 4.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0286  | 1    | 0.3696        | -               |
| 1.4286  | 50   | 0.1249        | -               |
| 2.8571  | 100  | 0.0114        | -               |
| 4.2857  | 150  | 0.0001        | -               |
| 5.7143  | 200  | 0.0001        | -               |
| 7.1429  | 250  | 0.0001        | -               |
| 8.5714  | 300  | 0.0001        | -               |
| 10.0    | 350  | 0.0001        | -               |
| 11.4286 | 400  | 0.0           | -               |
| 12.8571 | 450  | 0.0001        | -               |
| 14.2857 | 500  | 0.0           | -               |
| 15.7143 | 550  | 0.0           | -               |
| 17.1429 | 600  | 0.0           | -               |
| 18.5714 | 650  | 0.0           | -               |
| 20.0    | 700  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->