Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- en
|
5 |
+
- english
|
6 |
+
- gpt2
|
7 |
+
- gpt3
|
8 |
+
- text-generation
|
9 |
+
- lm
|
10 |
+
- nlp
|
11 |
+
datasets:
|
12 |
+
- cnn_dailymail
|
13 |
+
widget:
|
14 |
+
- text: "Ever noticed how plane seats appear to be getting smaller and smaller? "
|
15 |
+
|
16 |
+
inference:
|
17 |
+
parameters:
|
18 |
+
max_length: 120
|
19 |
+
do_sample: True
|
20 |
+
temperature: 1.0
|
21 |
+
---
|
22 |
+
|
23 |
+
# GPT-3 small
|
24 |
+
|
25 |
+
Pretrained GPT-3 small, it's architecture intentionally resembles that of GPT-3, model was trained on CNN Daily Mail News dataset for text generation
|
26 |
+
|
27 |
+
# How to use the model
|
28 |
+
|
29 |
+
~~~~
|
30 |
+
from transformers import GPT2Tokenizer, GPTNeoForCausalLM
|
31 |
+
|
32 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt3-small-finetune-cnndaily-news-news')
|
33 |
+
model = GPTNeoForCausalLM.from_pretrained('gpt3-small-finetune-cnndaily-news-news')
|
34 |
+
|
35 |
+
text = "Ever noticed how plane seats appear to be getting smaller and smaller? "
|
36 |
+
input_ids = tokenizer.encode(text, return_tensors='pt')
|
37 |
+
max_length = 150
|
38 |
+
|
39 |
+
sample_outputs = model.generate(input_ids, do_sample=True, max_length=max_length)
|
40 |
+
|
41 |
+
for i, sample_output in enumerate(sample_outputs):
|
42 |
+
print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist())))
|
43 |
+
print('\n---')
|
44 |
+
~~~~
|
45 |
+
|
46 |
+
|
47 |
+
## Author
|
48 |
+
`
|
49 |
+
Phan Minh Toan
|
50 |
+
`
|