|
import torch as th |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
import lightning as ltn |
|
import argparse |
|
import lightning.pytorch as pl |
|
|
|
from torch import Tensor |
|
from torch import nn |
|
from lightning.pytorch.callbacks.early_stopping import EarlyStopping |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-n", "--n_epochs", type=int, default=1000, help="number of epochs of training") |
|
parser.add_argument("-b", "--batch", type=int, default=256, help="batch size of training") |
|
parser.add_argument("-m", "--model", type=str, default='mnist0', help="model to execute") |
|
opt = parser.parse_args() |
|
|
|
if th.cuda.is_available(): |
|
accelerator = 'gpu' |
|
elif th.backends.mps.is_available(): |
|
accelerator = 'cpu' |
|
else: |
|
accelerator = 'cpu' |
|
|
|
|
|
class OptAEGV1(nn.Module): |
|
|
|
def __init__(self, points=11): |
|
super().__init__() |
|
self.points = points |
|
self.iscale = nn.Parameter(th.normal(0, 1, (1, 1, 1, 1))) |
|
self.oscale = nn.Parameter(th.normal(0, 1, (1, 1, 1, 1))) |
|
self.theta = th.linspace(-th.pi, th.pi, points) |
|
self.velocity = th.linspace(0, th.e, points) |
|
self.weight = nn.Parameter(th.normal(0, 1, (points, points))) |
|
|
|
@th.compile |
|
def integral(self, param, index): |
|
return th.sum(param[index].view(-1, 1) * th.softmax(self.weight, dim=1)[index, :], dim=1) |
|
|
|
@th.compile |
|
def interplot(self, param, index): |
|
lmt = param.size(0) - 1 |
|
|
|
p0 = index.floor().long() |
|
p1 = p0 + 1 |
|
pos = index - p0 |
|
p0 = p0.clamp(0, lmt) |
|
p1 = p1.clamp(0, lmt) |
|
|
|
v0 = self.integral(param, p0) |
|
v1 = self.integral(param, p1) |
|
|
|
return (1 - pos) * v0 + pos * v1 |
|
|
|
@th.compile |
|
def forward(self, data: Tensor) -> Tensor: |
|
if self.theta.device != data.device: |
|
self.theta = self.theta.to(data.device) |
|
self.velocity = self.velocity.to(data.device) |
|
shape = data.size() |
|
data = (data - data.mean()) / data.std() * self.iscale |
|
data = data.flatten(0) |
|
|
|
theta = self.interplot(self.theta, th.sigmoid(data) * (self.points - 1)) |
|
ds = self.interplot(self.velocity, th.abs(th.tanh(data) * (self.points - 1))) |
|
|
|
dx = ds * th.cos(theta) |
|
dy = ds * th.sin(theta) |
|
data = data * th.exp(dy) + dx |
|
|
|
data = (data - data.mean()) / data.std() * self.oscale |
|
return data.view(*shape) |
|
|
|
|
|
class MNISTModel(ltn.LightningModule): |
|
def __init__(self): |
|
super().__init__() |
|
self.learning_rate = 1e-3 |
|
self.counter = 0 |
|
self.labeled_loss = 0 |
|
self.labeled_correct = 0 |
|
|
|
def configure_optimizers(self): |
|
optimizer = th.optim.Adam(self.parameters(), lr=self.learning_rate) |
|
scheduler = th.optim.lr_scheduler.CosineAnnealingLR(optimizer, 37) |
|
return [optimizer], [scheduler] |
|
|
|
def training_step(self, train_batch, batch_idx): |
|
x, y = train_batch |
|
x = x.view(-1, 1, 28, 28) |
|
z = self.forward(x) |
|
loss = F.nll_loss(z, y) |
|
|
|
self.log('train_loss', loss, prog_bar=True) |
|
return loss |
|
|
|
def validation_step(self, val_batch, batch_idx): |
|
x, y = val_batch |
|
x = x.view(-1, 1, 28, 28) |
|
|
|
z = self.forward(x) |
|
loss = F.nll_loss(z, y) |
|
self.log('val_loss', loss, prog_bar=True) |
|
|
|
pred = z.data.max(1, keepdim=True)[1] |
|
correct = pred.eq(y.data.view_as(pred)).sum() / y.size()[0] |
|
self.log('correct_rate', correct, prog_bar=True) |
|
|
|
self.labeled_loss += loss.item() * y.size()[0] |
|
self.labeled_correct += correct.item() * y.size()[0] |
|
self.counter += y.size()[0] |
|
|
|
def test_step(self, test_batch, batch_idx): |
|
x, y = test_batch |
|
x = x.view(-1, 1, 28, 28) |
|
z = self(x) |
|
|
|
pred = z.data.max(1, keepdim=True)[1] |
|
correct = pred.eq(y.data.view_as(pred)).sum() / y.size()[0] |
|
self.log('correct_rate', correct, prog_bar=True) |
|
|
|
def on_save_checkpoint(self, checkpoint) -> None: |
|
import glob, os |
|
|
|
correct = self.labeled_correct / self.counter |
|
loss = self.labeled_loss / self.counter |
|
record = '%2.5f-%03d-%1.5f.ckpt' % (correct, checkpoint['epoch'], loss) |
|
fname = 'best-%s' % record |
|
with open(fname, 'bw') as f: |
|
th.save(checkpoint, f) |
|
for ix, ckpt in enumerate(sorted(glob.glob('best-*.ckpt'), reverse=True)): |
|
if ix > 5: |
|
os.unlink(ckpt) |
|
|
|
self.counter = 0 |
|
self.labeled_loss = 0 |
|
self.labeled_correct = 0 |
|
|
|
print() |
|
|
|
|
|
class MNIST_OptAEGV1(MNISTModel): |
|
def __init__(self): |
|
super().__init__() |
|
self.pool = nn.MaxPool2d(2) |
|
self.conv0 = nn.Conv2d(1, 2, kernel_size=7, padding=3, bias=False) |
|
self.lnon0 = OptAEGV1() |
|
self.conv1 = nn.Conv2d(2, 2, kernel_size=5, padding=2) |
|
self.lnon1 = OptAEGV1() |
|
self.conv2 = nn.Conv2d(2, 2, kernel_size=5, padding=2) |
|
self.lnon2 = OptAEGV1() |
|
self.conv3 = nn.Conv2d(2, 2, kernel_size=5, padding=2) |
|
self.lnon3 = OptAEGV1() |
|
self.fc1 = nn.Linear(2 * 3 * 3, 10) |
|
self.lnon4 = OptAEGV1() |
|
self.fc2 = nn.Linear(10, 10, bias=False) |
|
|
|
def forward(self, x): |
|
x = self.conv0(x) |
|
x = self.lnon0(x) |
|
x = self.pool(x) |
|
x = self.conv1(x) |
|
x = self.lnon1(x) |
|
x = self.pool(x) |
|
x = self.conv2(x) |
|
x = self.lnon2(x) |
|
x = self.pool(x) |
|
x = th.flatten(x, 1) |
|
x = self.fc1(x) |
|
x = self.lnon4(x) |
|
x = self.fc2(x) |
|
x = F.log_softmax(x, dim=1) |
|
return x |
|
|
|
|
|
def test_best(): |
|
import glob |
|
fname = sorted(glob.glob('best-*.ckpt'), reverse=True)[0] |
|
with open(fname, 'rb') as f: |
|
checkpoint = th.load(f) |
|
model.load_state_dict(checkpoint['state_dict'], strict=False) |
|
model.eval() |
|
|
|
with th.no_grad(): |
|
counter, success = 0, 0 |
|
for test_batch in test_loader: |
|
x, y = test_batch |
|
x = x.view(-1, 1, 28, 28) |
|
z = model(x) |
|
pred = z.data.max(1, keepdim=True)[1] |
|
correct = pred.eq(y.data.view_as(pred)).sum() / y.size()[0] |
|
print('.', end='', flush=True) |
|
if counter % 100 == 0: |
|
print('') |
|
success += correct.item() |
|
counter += 1 |
|
print('') |
|
print('Accuracy: %2.5f' % (success / counter)) |
|
th.save(model, 'mnist-optaeg-v1.pt') |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
print('loading data...') |
|
from torch.utils.data import DataLoader |
|
from torchvision.datasets import MNIST |
|
from torchvision import transforms |
|
|
|
mnist_train = MNIST('datasets', train=True, download=True, transform=transforms.Compose([ |
|
transforms.ToTensor(), |
|
])) |
|
|
|
mnist_test = MNIST('datasets', train=False, download=True, transform=transforms.Compose([ |
|
transforms.ToTensor(), |
|
])) |
|
|
|
train_loader = DataLoader(mnist_train, shuffle=True, batch_size=opt.batch, num_workers=8) |
|
val_loader = DataLoader(mnist_test, batch_size=opt.batch, num_workers=8) |
|
test_loader = DataLoader(mnist_test, batch_size=opt.batch, num_workers=8) |
|
|
|
|
|
print('construct trainer...') |
|
trainer = pl.Trainer(accelerator=accelerator, precision=32, max_epochs=opt.n_epochs, |
|
callbacks=[EarlyStopping(monitor="correct_rate", mode="max", patience=30)]) |
|
|
|
print('construct model...') |
|
model = MNIST_OptAEGV1() |
|
|
|
print('training...') |
|
trainer.fit(model, train_loader, val_loader) |
|
|
|
print('testing...') |
|
test_best() |
|
|