File size: 1,257 Bytes
5115436
0dcc8f9
 
 
 
 
 
f2952a4
 
 
5115436
 
0dcc8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
license: apache-2.0
pipeline_tag: text-classification
language:
  - yue
widget:
  - text: 係唔係廣東話?
    example_title: "Cantonese"
  - text: 台灣真美!
    example_title: "Traditional Chinese"
---

## Model Description
A BERT-based model trained to classify text as either Cantonese or Traditional Chinese. 

## Intended Use
- **Primary Application**: Language classification for Cantonese and Traditional Chinese texts.
- **Users**: NLP researchers, developers working with Chinese language data.

## Training Data
Utilizes the "raptorkwok/cantonese-traditional-chinese-parallel-corpus" from Hugging Face Datasets.

## Training Procedure
- **Base Model**: `bert-base-chinese`
- **Epochs**: 3
- **Learning Rate**: 2e-5
- Evaluation at the end of each epoch, saving the best model.

## How to Use
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("ming030890/chinese-langid")
model = AutoModelForSequenceClassification.from_pretrained("ming030890/chinese-langid")
text = "係唔係廣東話?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
# 0 for Cantonese, 1 for Traditional Chinese
prediction = outputs.logits.argmax(-1).item()
```