File size: 11,677 Bytes
ec8a4ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import torch
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from typing import Optional, Callable
from .rpe_options import make_kprpe_shared, make_kprpe_input
from .RPE import build_rpe
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class VITBatchNorm(nn.Module):
def __init__(self, num_features):
super().__init__()
self.num_features = num_features
self.bn = nn.BatchNorm1d(num_features=num_features)
def forward(self, x):
return self.bn(x)
class Attention(nn.Module):
def __init__(self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_scale: Optional[None] = None,
attn_drop: float = 0.,
proj_drop: float = 0.,
rpe_config=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
# image relative position encoding
self.rpe_config = rpe_config
self.rpe_q, self.rpe_k, self.rpe_v = build_rpe(rpe_config, head_dim=head_dim, num_heads=num_heads)
def forward(self, x, extra_ctx=None):
batch_size, num_token, embed_dim = x.shape
#qkv is [3,batch_size,num_heads,num_token, embed_dim//num_heads]
qkv = self.qkv(x).reshape(
batch_size, num_token, 3, self.num_heads, embed_dim // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q *= self.scale
attn = (q @ k.transpose(-2, -1))
# image relative position on keys
if self.rpe_k is not None:
ctx = extra_ctx['rel_keypoints']
attn += self.rpe_k(ctx)
# image relative position on queries
if self.rpe_q is not None:
attn += self.rpe_q(k * self.scale).transpose(2, 3)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
out = attn @ v
# image relative position on values
if self.rpe_v is not None:
out += self.rpe_v(attn)
x = out.transpose(1, 2).reshape(batch_size, num_token, embed_dim)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self,
dim: int,
num_heads: int,
num_patches: int,
mlp_ratio: float = 4.,
qkv_bias: bool = False,
qk_scale: Optional[None] = None,
drop: float = 0.,
attn_drop: float = 0.,
drop_path: float = 0.,
act_layer: Callable = nn.ReLU6,
norm_layer: str = "ln",
patch_n: int = 144,
rpe_config=None):
super().__init__()
if norm_layer == "bn":
self.norm1 = VITBatchNorm(num_features=num_patches)
self.norm2 = VITBatchNorm(num_features=num_patches)
elif norm_layer == "ln":
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
rpe_config=rpe_config)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.extra_gflops = (num_heads * patch_n * (dim//num_heads)*patch_n * 2) / (1000**3)
def forward(self, x, extra_ctx=None):
norm_x = self.norm1(x)
attn_out = self.attn(norm_x, extra_ctx=extra_ctx)
x = x + self.drop_path(attn_out)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
def __init__(self, img_size=108, patch_size=9, in_channels=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_channels, embed_dim,
kernel_size=patch_size, stride=patch_size)
def forward(self, x):
batch_size, channels, height, width = x.shape
assert height == self.img_size[0] and width == self.img_size[1], \
f"Input image size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class VisionTransformerWithKPRPE(nn.Module):
"""
Vision Transformer with auxiliary keypoint inputs for KP-RPE
"""
def __init__(self,
img_size: int = 112,
patch_size: int = 16,
in_channels: int = 3,
num_classes: int = 1000,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.,
qkv_bias: bool = False,
qk_scale: Optional[None] = None,
drop_rate: float = 0.,
attn_drop_rate: float = 0.,
drop_path_rate: float = 0.,
num_patches: Optional[int] = None,
norm_layer: str = "ln",
mask_ratio = 0.1,
using_checkpoint = False,
rpe_config=None,
):
super().__init__()
self.num_classes = num_classes
# num_features for consistency with other models
self.num_features = self.embed_dim = embed_dim
if num_patches is not None:
self.patch_embed = nn.Identity()
else:
self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.mask_ratio = mask_ratio
self.using_checkpoint = using_checkpoint
self.num_patches = num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
patch_n = (img_size//patch_size)**2
self.blocks = nn.ModuleList(
[
Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
num_patches=num_patches, patch_n=patch_n, rpe_config=rpe_config)
for i in range(depth)]
)
self.extra_gflops = 0.0
for _block in self.blocks:
self.extra_gflops += _block.extra_gflops
if norm_layer == "ln":
self.norm = nn.LayerNorm(embed_dim)
elif norm_layer == "bn":
self.norm = VITBatchNorm(self.num_patches)
# features head
self.feature = nn.Sequential(
nn.Linear(in_features=embed_dim * num_patches, out_features=embed_dim, bias=False),
nn.BatchNorm1d(num_features=embed_dim, eps=2e-5),
nn.Linear(in_features=embed_dim, out_features=num_classes, bias=False),
nn.BatchNorm1d(num_features=num_classes, eps=2e-5)
)
if self.mask_ratio == 0:
pass
else:
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
torch.nn.init.normal_(self.mask_token, std=.02)
trunc_normal_(self.pos_embed, std=.02)
# trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
self.num_heads = num_heads
self.depth = depth
self.rpe_config = rpe_config
self.keypoint_linear, self.num_buckets = make_kprpe_shared(rpe_config, depth, num_heads)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def random_masking(self, x, mask_ratio=0.1):
N, L, D = x.size() # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
# ascend: small is keep, large is remove
ids_shuffle = torch.argsort(noise, dim=1)
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
index = ids_keep.unsqueeze(-1).repeat(1, 1, D)
x_masked = torch.gather(x, dim=1, index=index)
return x_masked, index, ids_restore
def forward_features(self, x, keypoints=None):
B = x.shape[0]
x = self.patch_embed(x)
x = x + self.pos_embed
x = self.pos_drop(x)
if self.training and self.mask_ratio > 0:
x, _, ids_restore = self.random_masking(x)
extra_ctx = make_kprpe_input(keypoints, x, self.keypoint_linear, self.rpe_config, self.mask_ratio,
self.depth, self.num_heads, self.num_buckets)
for block_idx, func in enumerate(self.blocks):
if isinstance(extra_ctx, list):
extra_ctx_ = extra_ctx[block_idx]
else:
extra_ctx_ = extra_ctx
if self.using_checkpoint and self.training:
from torch.utils.checkpoint import checkpoint
x = checkpoint(func, x, extra_ctx_)
else:
x = func(x, extra_ctx=extra_ctx_)
x = self.norm(x.float())
if self.training and self.mask_ratio > 0:
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] - x.shape[1], 1)
x_ = torch.cat([x[:, :, :], mask_tokens], dim=1) # no cls token
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle
x = x_
return torch.reshape(x, (B, self.num_patches * self.embed_dim))
def forward(self, x, keypoints=None):
x = self.forward_features(x, keypoints=keypoints)
x = self.feature(x)
return x
|