File size: 3,016 Bytes
ba58d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2df97
ba58d56
 
 
 
 
 
 
 
 
 
 
3e40e47
31a29e4
 
ba58d56
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
language: en
license: mit
arxiv: 2403.14852
---

<div align="center">
<h1>
  CVLFace Pretrained Model (ADAFACE VIT BASE KPRPE WEBFACE4M)
</h1>
</div>


<p align="center">
 🌎 <a href="https://github.com/mk-minchul/CVLface" target="_blank">GitHub</a> • 🤗 <a href="https://huggingface.co/minchul" target="_blank">Hugging Face</a> 
</p>


-----


##  1. Introduction

Model Name: ADAFACE VIT BASE KPRPE WEBFACE4M

Related Paper: KeyPoint Relative Position Encoding for Face Recognition (https://arxiv.org/abs/2403.14852)

Please cite the orignal paper and follow the license of the training dataset.

##  2. Quick Start

```python
from transformers import AutoModel
from huggingface_hub import hf_hub_download
import shutil
import os
import torch


# helpfer function to download huggingface repo and use model
def download(repo_id, path, HF_TOKEN=None):
    files_path = os.path.join(path, 'files.txt')
    if not os.path.exists(files_path):
        hf_hub_download(repo_id, 'files.txt', token=HF_TOKEN, local_dir=path, local_dir_use_symlinks=False)
    with open(os.path.join(path, 'files.txt'), 'r') as f:
        files = f.read().split('\n')
    for file in [f for f in files if f] + ['config.json', 'wrapper.py', 'model.safetensors']:
        full_path = os.path.join(path, file)
        if not os.path.exists(full_path):
            hf_hub_download(repo_id, file, token=HF_TOKEN, local_dir=path, local_dir_use_symlinks=False)

            
# helpfer function to download huggingface repo and use model
def load_model_from_local_path(path, HF_TOKEN=None):
    cwd = os.getcwd()
    os.chdir(path)
    model = AutoModel.from_pretrained(path, trust_remote_code=True, token=HF_TOKEN)
    os.chdir(cwd)
    return model


# helpfer function to download huggingface repo and use model
def load_model_by_repo_id(repo_id, save_path, HF_TOKEN=None, force_download=False):
    if force_download:
        if os.path.exists(save_path):
            shutil.rmtree(save_path)
    download(repo_id, save_path, HF_TOKEN)
    return load_model_from_local_path(save_path, HF_TOKEN)


if __name__ == '__main__':
    
    HF_TOKEN = 'YOUR_HUGGINGFACE_TOKEN'
    path = os.path.expanduser('~/.cvlface_cache/minchul/cvlface_adaface_vit_base_kprpe_webface4m')
    repo_id = 'minchul/cvlface_adaface_vit_base_kprpe_webface4m'
    model = load_model_by_repo_id(repo_id, path, HF_TOKEN)

    # input is a rgb image normalized.
    from torchvision.transforms import Compose, ToTensor, Normalize
    from PIL import Image
    img = Image.open('path/to/image.jpg')
    trans = Compose([ToTensor(), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
    input = trans(img).unsqueeze(0)  # torch.randn(1, 3, 112, 112)
    
    # KPRPE also takes keypoints locations as input
    aligner = load_model_by_repo_id('minchul/cvlface_DFA_mobilenet', path, HF_TOKEN)
    aligned_x, orig_ldmks, aligned_ldmks, score, thetas, bbox = aligner(input)
    keypoints = orig_ldmks  # torch.randn(1, 5, 2)
    out = model(input, keypoints)
```