File size: 2,296 Bytes
17d73d1 0ff98af 17d73d1 8c14bf8 0ff98af 17d73d1 8c14bf8 17d73d1 8c14bf8 17d73d1 8c14bf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- de
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- paws-x
- tapaco
metrics:
- perplexity
base_model: google/mt5-small
model-index:
- name: paraphraser-german-mt5-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# paraphraser-german-mt5-small
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the paws-x (de) and tapaco (de) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7678
- Perplexity: 5.86
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.7064 | 0.05 | 2000 | 2.0731 |
| 2.8673 | 0.11 | 4000 | 2.0420 |
| 2.6133 | 0.16 | 6000 | 2.0080 |
| 2.4563 | 0.21 | 8000 | 1.9556 |
| 2.385 | 0.27 | 10000 | 1.9090 |
| 2.3122 | 0.32 | 12000 | 1.9127 |
| 2.2775 | 0.38 | 14000 | 1.8658 |
| 2.2323 | 0.43 | 16000 | 1.8407 |
| 2.17 | 0.48 | 18000 | 1.8342 |
| 2.1672 | 0.54 | 20000 | 1.8328 |
| 2.1488 | 0.59 | 22000 | 1.8071 |
| 2.1026 | 0.64 | 24000 | 1.8328 |
| 2.1036 | 0.7 | 26000 | 1.7979 |
| 2.0854 | 0.75 | 28000 | 1.7895 |
| 2.0594 | 0.81 | 30000 | 1.7944 |
| 2.0793 | 0.86 | 32000 | 1.7726 |
| 2.0661 | 0.91 | 34000 | 1.7762 |
| 2.0722 | 0.97 | 36000 | 1.7714 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2 |