language: en | |
tags: | |
- deberta-v1 | |
- fill-mask | |
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png | |
license: mit | |
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention | |
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. | |
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. | |
#### Fine-tuning on NLU tasks | |
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks. | |
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m | | |
|-------------------|-----------|-----------|--------| | |
| RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 | | |
| XLNet-Large | -/- | -/80.2 | 86.8 | | |
| **DeBERTa-base** | 93.1/87.2 | 86.2/83.1 | 88.8 | | |
### Citation | |
If you find DeBERTa useful for your work, please cite the following paper: | |
``` latex | |
@inproceedings{ | |
he2021deberta, | |
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, | |
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, | |
booktitle={International Conference on Learning Representations}, | |
year={2021}, | |
url={https://openreview.net/forum?id=XPZIaotutsD} | |
} | |
``` | |