Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,26 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
4 |
|
@@ -10,8 +32,8 @@ import requests
|
|
10 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
11 |
image = Image.open(requests.get(url, stream=True).raw)
|
12 |
|
13 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained('
|
14 |
-
model = CvtForImageClassification.from_pretrained('
|
15 |
|
16 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
17 |
outputs = model(**inputs)
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-classification
|
6 |
+
datasets:
|
7 |
+
- imagenet-1k
|
8 |
+
widget:
|
9 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
|
10 |
+
example_title: Tiger
|
11 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
|
12 |
+
example_title: Teapot
|
13 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
|
14 |
+
example_title: Palace
|
15 |
+
---
|
16 |
+
|
17 |
+
# Convolutional Vision Transformer (CvT)
|
18 |
+
|
19 |
+
CvT-13 model pre-trained on ImageNet-22k and fine-tuned on ImageNet-1k at resolution 384x384. It was introduced in the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Wu et al. and first released in [this repository](https://github.com/microsoft/CvT).
|
20 |
+
|
21 |
+
Disclaimer: The team releasing CvT did not write a model card for this model so this model card has been written by the Hugging Face team.
|
22 |
+
|
23 |
+
## Usage
|
24 |
|
25 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
26 |
|
|
|
32 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
33 |
image = Image.open(requests.get(url, stream=True).raw)
|
34 |
|
35 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained('microsoft/cvt-13-384-22k')
|
36 |
+
model = CvtForImageClassification.from_pretrained('microsoft/cvt-13-384-22k')
|
37 |
|
38 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
39 |
outputs = model(**inputs)
|