andrescodas commited on
Commit
fafcaf0
1 Parent(s): c5f603a

update the example for "Inference with Hugging Face library"

Browse files
Files changed (1) hide show
  1. README.md +30 -20
README.md CHANGED
@@ -101,37 +101,47 @@ analysis is needed to assess potential harm or bias in the proposed application.
101
  **Inference with Hugging Face library**
102
 
103
  ```python
104
- import transformers
105
  import torch
 
106
 
107
- model_path = 'microsoft/Orca-2-7b'
108
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
109
- model = transformers.AutoModelForCausalLM.from_pretrained(model_path)
110
- model.to(device)
 
 
111
 
 
 
112
  tokenizer = transformers.AutoTokenizer.from_pretrained(
113
- model_path,
114
- model_max_length=4096,
115
- padding_side="right",
116
- use_fast=False,
117
- add_special_tokens=False,
118
- )
119
 
120
  system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
121
- user_message = "\" \n :You can't just say, \"\"that's crap\"\" and remove it without gaining a consensus. You already know this, based on your block history. —/ \" \nIs the comment obscene? \nOptions : Yes, No."
122
 
123
- # We use Chat Markup Language https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/includes/chat-markup-language.md#working-with-chat-markup-language-chatml
124
- prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
125
 
126
  inputs = tokenizer(prompt, return_tensors='pt')
127
- inputs = inputs.to(device)
 
128
 
129
- output_ids = model.generate(inputs["input_ids"], max_length=4096, do_sample=False, temperature=0.0, use_cache=True)
130
- sequence_length = inputs["input_ids"].shape[1]
131
- new_output_ids = output_ids[:, sequence_length:]
132
- answers = tokenizer.batch_decode(new_output_ids, skip_special_tokens=True)
 
 
 
 
 
 
 
 
133
 
134
- print(answers[0])
135
  ```
136
 
137
 
 
101
  **Inference with Hugging Face library**
102
 
103
  ```python
 
104
  import torch
105
+ import transformers
106
 
107
+ if torch.cuda.is_available():
108
+ torch.set_default_device("cuda")
109
+ else:
110
+ torch.set_default_device("cpu")
111
+
112
+ model = transformers.AutoModelForCausalLM.from_pretrained("microsoft/Orca-2-7b", device_map='auto')
113
 
114
+ # https://github.com/huggingface/transformers/issues/27132
115
+ # please use the slow tokenizer since fast and slow tokenizer produces different tokens
116
  tokenizer = transformers.AutoTokenizer.from_pretrained(
117
+ "microsoft/Orca-2-7b",
118
+ use_fast=False,
119
+ )
 
 
 
120
 
121
  system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
122
+ user_message = "How can you determine if a restaurant is popular among locals or mainly attracts tourists, and why might this information be useful?"
123
 
124
+ # We use Chat Markup Language https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/includes/chat-markup-language.md#working-with-chat-markup-language-chatml
125
+ prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
126
 
127
  inputs = tokenizer(prompt, return_tensors='pt')
128
+ output_ids = model.generate(inputs["input_ids"],)
129
+ answer = tokenizer.batch_decode(output_ids)[0]
130
 
131
+ print(answer)
132
+
133
+ # This example continues showing how to add a second turn message by the user to the conversation
134
+ second_turn_user_message = "Give me a list of the key points of your first answer."
135
+
136
+ # we set add_special_tokens=False because we dont want to automatically add a bos_token between messages
137
+ second_turn_message_in_markup = f"\n<|im_start|>user\n{second_turn_user_message}<|im_end|>\n<|im_start|>assistant"
138
+ second_turn_tokens = tokenizer(second_turn_message_in_markup, return_tensors='pt', add_special_tokens=False)
139
+ second_turn_input = torch.cat([output_ids, second_turn_tokens['input_ids']], dim=1)
140
+
141
+ output_ids_2 = model.generate(second_turn_input,)
142
+ second_turn_answer = tokenizer.batch_decode(output_ids_2)[0]
143
 
144
+ print(second_turn_answer)
145
  ```
146
 
147