File size: 14,318 Bytes
e3ef0b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Run entity linking
"""
import os
import glob
import logging
import pathlib
import pickle
import time
import math
import multiprocessing
from typing import List, Tuple, Dict, Iterator, Set
from functools import partial
from multiprocessing.dummy import Pool
import hydra
import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf
from torch import Tensor as T
from torch import nn
import faiss
from transformers import (
set_seed,
AutoConfig,
AutoTokenizer,
AutoModel,
PreTrainedTokenizer,
)
from utils import generate_vectors
# Setup logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
log_formatter = logging.Formatter(
"[%(thread)s] %(asctime)s [%(levelname)s] %(name)s: %(message)s"
)
console = logging.StreamHandler()
console.setFormatter(log_formatter)
logger.addHandler(console)
class DenseIndexer(object):
def __init__(self, buffer_size: int = 50000):
self.buffer_size = buffer_size
self.index_id_to_db_id = []
self.index = None
def init_index(self, vector_sz: int):
raise NotImplementedError
def index_data(self, data: List[Tuple[object, np.array]]):
raise NotImplementedError
def get_index_name(self):
raise NotImplementedError
def search_knn(
self, query_vectors: np.array, top_docs: int
) -> List[Tuple[List[object], List[float]]]:
raise NotImplementedError
def serialize(self, file: str):
logger.info("Serializing index to %s", file)
if os.path.isdir(file):
index_file = os.path.join(file, "index.dpr")
meta_file = os.path.join(file, "index_meta.dpr")
else:
index_file = file + ".index.dpr"
meta_file = file + ".index_meta.dpr"
faiss.write_index(self.index, index_file)
with open(meta_file, mode="wb") as f:
pickle.dump(self.index_id_to_db_id, f)
def get_files(self, path: str):
if os.path.isdir(path):
index_file = os.path.join(path, "index.dpr")
meta_file = os.path.join(path, "index_meta.dpr")
else:
index_file = path + ".index.dpr"
meta_file = path + ".index_meta.dpr"
return index_file, meta_file
def index_exists(self, path: str):
index_file, meta_file = self.get_files(path)
return os.path.isfile(index_file) and os.path.isfile(meta_file)
def deserialize(self, path: str):
logger.info("Loading index from %s", path)
index_file, meta_file = self.get_files(path)
self.index = faiss.read_index(index_file)
logger.info(
"Loaded index of type %s and size %d", type(self.index), self.index.ntotal
)
with open(meta_file, "rb") as reader:
self.index_id_to_db_id = pickle.load(reader)
assert (
len(self.index_id_to_db_id) == self.index.ntotal
), "Deserialized index_id_to_db_id should match faiss index size"
def _update_id_mapping(self, db_ids: List) -> int:
self.index_id_to_db_id.extend(db_ids)
return len(self.index_id_to_db_id)
class DenseFlatIndexer(DenseIndexer):
def __init__(self, buffer_size: int = 50000):
super(DenseFlatIndexer, self).__init__(buffer_size=buffer_size)
def init_index(self, vector_sz: int):
self.index = faiss.IndexFlatIP(vector_sz)
def index_data(self, data: List[Tuple[object, np.array]]):
n = len(data)
# indexing in batches is beneficial for many faiss index types
for i in range(0, n, self.buffer_size):
db_ids = [t[0] for t in data[i : i + self.buffer_size]]
vectors = [
np.reshape(t[1], (1, -1)) for t in data[i : i + self.buffer_size]
]
vectors = np.concatenate(vectors, axis=0)
total_data = self._update_id_mapping(db_ids)
self.index.add(vectors)
logger.info("data indexed %d", total_data)
indexed_cnt = len(self.index_id_to_db_id)
logger.info("Total data indexed %d", indexed_cnt)
def search_knn(
self, query_vectors: np.array, top_docs: int, batch_size: int = 4096,
) -> List[Tuple[List[object], List[float]]]:
num_queries = query_vectors.shape[0]
scores, indexes = [], []
for start in range(0, num_queries, batch_size):
logger.info(f"Searched {start} queries.")
batch_vectors = query_vectors[start:start + batch_size]
batch_scores, batch_indexes = self.index.search(batch_vectors, top_docs)
scores.extend(batch_scores)
indexes.extend(batch_indexes)
# convert to external ids
db_ids = [
[self.index_id_to_db_id[i] for i in query_top_idxs]
for query_top_idxs in indexes
]
result = [(db_ids[i], scores[i]) for i in range(len(db_ids))]
return result
def get_index_name(self):
return "flat_index"
def load_umls_data(files_patterns: List[str], candidate_ids: Dict = None) -> Dict:
input_paths = []
for pattern in files_patterns:
pattern_files = glob.glob(pattern)
input_paths.extend(pattern_files)
umls_data = {}
for file in sorted(input_paths):
logger.info("Reading encoded UMLS data from file %s", file)
with open(file, "rb") as reader:
for meta, vec in pickle.load(reader):
assert len(meta['cuis']) == 1, breakpoint()
cui = meta['cuis'][0]
if candidate_ids and cui not in candidate_ids:
continue
umls_data[cui] = (meta, vec)
logger.info(f"Loaded UMLS data = {len(umls_data)}.")
return umls_data
def iterate_encoded_files(
vector_files: list,
candidate_ids: Set = None,
umls_data: Dict = None,
)-> Iterator:
logger.info("Loading encoded prototype embeddings...")
proto_data = {}
for file in vector_files:
logger.info("Reading file %s", file)
with open(file, "rb") as reader:
for meta, vec in pickle.load(reader):
cuis = meta['cuis']
if candidate_ids and all(c not in candidate_ids for c in cuis):
continue
for cui in cuis:
proto_data.setdefault(cui, []).append((meta, vec))
# Concatenate prototype embs with additional knowledge embs from UMLS.
if umls_data is not None:
for cui, (meta, vec) in umls_data.items():
if cui in proto_data:
for _, _vec in proto_data.pop(cui):
extended_vec = np.concatenate((vec, _vec), axis=0)
yield (meta, extended_vec)
else:
extended_vec = np.concatenate((vec, np.zeros_like(vec)), axis=0)
yield (meta, extended_vec)
for cui in list(proto_data.keys()):
for meta, vec in proto_data.pop(cui):
extended_vec = np.concatenate((np.zeros_like(vec), vec), axis=0)
yield (meta, extended_vec)
assert len(proto_data) == 0
class DenseRetriever:
def __init__(
self,
encoder: nn.Module,
tokenizer: PreTrainedTokenizer,
batch_size: int,
max_length: int,
):
self.encoder = encoder
self.tokenizer = tokenizer
self.batch_size = batch_size
self.max_length = max_length
def generate_mention_vectors(self, ds: torch.utils.data.Dataset) -> T:
self.encoder.eval()
return generate_vectors(
encoder=self.encoder,
tokenizer=self.tokenizer,
dataset=ds,
batch_size=self.batch_size,
max_length=self.max_length,
)
class FaissRetriever(DenseRetriever):
"""
Does entity retrieving over the provided index and encoder.
"""
def __init__(
self,
encoder: nn.Module,
tokenizer: PreTrainedTokenizer,
batch_size: int,
max_length: int,
index: DenseIndexer,
):
super().__init__(encoder, tokenizer, batch_size, max_length)
self.index = index
def index_encoded_data(
self,
vector_files: List[str],
buffer_size: int,
candidate_ids: Set = None,
umls_data: Dict = None,
):
"""
Indexes encoded data takes form a list of files
:param vector_files: a list of files
:param buffer_size: size of a buffer to send for the indexing at once
:return:
"""
buffer = []
for i, item in enumerate(
iterate_encoded_files(vector_files, candidate_ids, umls_data)
):
buffer.append(item)
if 0 < buffer_size == len(buffer):
self.index.index_data(buffer)
buffer = []
self.index.index_data(buffer)
logger.info("Data indexing completed.")
def get_top_hits(
self, mention_vectors: np.array, top_k: int = 100
) -> List[Tuple[List[object], List[float]]]:
"""
Does the retrieval of the best matching given the mention vectors batch
"""
time0 = time.time()
search = partial(
self.index.search_knn,
top_docs=top_k,
)
results = []
num_processes = multiprocessing.cpu_count()
shard_size = math.ceil(mention_vectors.shape[0] / num_processes)
shards = []
for i in range(0, mention_vectors.shape[0], shard_size):
shards.append(mention_vectors[i:i + shard_size])
with Pool(processes=num_processes) as pool:
it = pool.map(search, shards)
for ret in it:
results += ret
# results = self.index.search_knn(mention_vectors, top_k)
logger.info("index search time: %f sec.", time.time() - time0)
self.index = None
return results
def hit(pred: List[str], gold: List[str]) -> bool:
return all(p in gold for p in pred)
def dedup_ids(ids: List[Dict]) -> List[Dict]:
deduped_ids = []
seen_cuis = set()
for d in ids:
if all(cui in seen_cuis for cui in d['cuis']):
continue
seen_cuis.update(d['cuis'])
deduped_ids.append(d)
return deduped_ids
def evaluate(
ds: torch.utils.data.Dataset,
result_ent_ids: List[Tuple[List[object], List[float]]],
lookup_table: str,
top_ks: List[int] = (1, 5, 50, 100),
) -> List[Dict]:
lut = {}
with open(lookup_table, encoding='utf-8') as f:
for ln in f:
cuis, name = ln.strip().split('||')
cuis = cuis.split('|')
lut[name] = cuis
n = len(ds)
top_k_hits = {top_k: 0 for top_k in top_ks}
for i in range(len(result_ent_ids)):
d = ds[i]
ids, _ = result_ent_ids[i]
ids = dedup_ids(ids)
ids = ids[:max(top_ks)]
candidates = [
{'cuis': eid['cuis'], 'hit': int(hit(pred=eid['cuis'], gold=d.cuis))}
for eid in ids
]
lut_cuis = lut.get(d.mention, [])
if len(lut_cuis) == 1:
# If the mention only has one ID in the look up table,
# we use the ID as the top prediction.
candidates.insert(
0,
{'cuis': lut_cuis, 'hit': int(hit(pred=lut_cuis, gold=d.cuis))}
)
for top_k in top_k_hits:
if any(c['hit'] for c in candidates[:top_k]):
top_k_hits[top_k] += 1
top_k_acc = {top_k: v / n for top_k, v in top_k_hits.items()}
logger.info("Top-k accuracy %s", top_k_acc)
@hydra.main(config_path="conf", config_name="run_linking", version_base=None)
def main(cfg: DictConfig):
set_seed(cfg.seed)
logger.info("Configuration:")
logger.info("%s", OmegaConf.to_yaml(cfg))
# Load pretrained.
config = AutoConfig.from_pretrained(cfg.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(
cfg.model_name_or_path,
use_fast=True,
)
encoder = AutoModel.from_pretrained(
cfg.model_name_or_path,
config=config
)
encoder.cuda()
encoder.eval()
vector_size = config.hidden_size
logger.info("Encoder vector_size=%d", vector_size)
# Load test data.
ds = hydra.utils.instantiate(cfg.test_data)
# Init indexer.
index = DenseFlatIndexer()
index_buffer_sz = index.buffer_size
index.init_index(vector_size * 2)
# candidate ids
candidate_ids = None
if cfg.entity_list_ids:
with open(cfg.entity_list_ids, encoding='utf-8') as f:
candidate_ids = set(f.read().split('\n'))
# Start indexing
input_paths = []
for pattern in cfg.encoded_files:
pattern_files = glob.glob(pattern)
input_paths.extend(pattern_files)
input_paths = sorted(set(input_paths))
retriever = FaissRetriever(
encoder, tokenizer, cfg.batch_size, cfg.max_length, index)
mentions_tensor = retriever.generate_mention_vectors(ds)
# Load UMLS knowledge
umls_data = None
if cfg.encoded_umls_files:
umls_data = load_umls_data(cfg.encoded_umls_files, candidate_ids)
index_path = cfg.index_path
if index_path and index.index_exists(index_path):
logger.info("Index path: %s", index_path)
retriever.index.deserialize(index_path)
else:
logger.info("Indexing encoded data from files: %s", input_paths)
retriever.index_encoded_data(
vector_files=input_paths,
buffer_size=index_buffer_sz,
candidate_ids=candidate_ids,
umls_data=umls_data,
)
if index_path:
pathlib.Path(os.path.dirname(index_path)).mkdir(
parents=True, exist_ok=True)
retriever.index.serialize(index_path)
# Encode test data.
mentions_tensor = torch.cat([mentions_tensor, mentions_tensor], dim=1)
# To get k different entities, we retrieve 32 * k mentions and then dedup.
top_ids_and_scores = retriever.get_top_hits(
mentions_tensor.numpy(), cfg.num_retrievals * 32)
evaluate(ds, top_ids_and_scores, cfg.entity_list_names)
if __name__ == "__main__":
main() |