File size: 12,013 Bytes
8f71eda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import math
import torch
import torch.nn.functional as F
from math import log2
from torch import nn, einsum
from kornia.filters import filter2d
from einops import reduce, rearrange, repeat
def exists(val):
return val is not None
def is_power_of_two(val):
return log2(val).is_integer()
def default(val, d):
return val if exists(val) else d
def get_1d_dct(i, freq, L):
result = math.cos(math.pi * freq * (i + 0.5) / L) / math.sqrt(L)
return result * (1 if freq == 0 else math.sqrt(2))
def get_dct_weights(width, channel, fidx_u, fidx_v):
dct_weights = torch.zeros(1, channel, width, width)
c_part = channel // len(fidx_u)
for i, (u_x, v_y) in enumerate(zip(fidx_u, fidx_v)):
for x in range(width):
for y in range(width):
coor_value = get_1d_dct(x, u_x, width) * get_1d_dct(y, v_y, width)
dct_weights[:, i * c_part : (i + 1) * c_part, x, y] = coor_value
return dct_weights
class Blur(nn.Module):
def __init__(self):
super().__init__()
f = torch.Tensor([1, 2, 1])
self.register_buffer("f", f)
def forward(self, x):
f = self.f
f = f[None, None, :] * f[None, :, None]
return filter2d(x, f, normalized=True)
class ChanNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim=1, unbiased=False, keepdim=True)
mean = torch.mean(x, dim=1, keepdim=True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
def Conv2dSame(dim_in, dim_out, kernel_size, bias=True):
pad_left = kernel_size // 2
pad_right = (pad_left - 1) if (kernel_size % 2) == 0 else pad_left
return nn.Sequential(
nn.ZeroPad2d((pad_left, pad_right, pad_left, pad_right)),
nn.Conv2d(dim_in, dim_out, kernel_size, bias=bias),
)
class DepthWiseConv2d(nn.Module):
def __init__(self, dim_in, dim_out, kernel_size, padding=0, stride=1, bias=True):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(
dim_in,
dim_in,
kernel_size=kernel_size,
padding=padding,
groups=dim_in,
stride=stride,
bias=bias,
),
nn.Conv2d(dim_in, dim_out, kernel_size=1, bias=bias),
)
def forward(self, x):
return self.net(x)
class FCANet(nn.Module):
def __init__(self, *, chan_in, chan_out, reduction=4, width):
super().__init__()
freq_w, freq_h = ([0] * 8), list(
range(8)
) # in paper, it seems 16 frequencies was ideal
dct_weights = get_dct_weights(
width, chan_in, [*freq_w, *freq_h], [*freq_h, *freq_w]
)
self.register_buffer("dct_weights", dct_weights)
chan_intermediate = max(3, chan_out // reduction)
self.net = nn.Sequential(
nn.Conv2d(chan_in, chan_intermediate, 1),
nn.LeakyReLU(0.1),
nn.Conv2d(chan_intermediate, chan_out, 1),
nn.Sigmoid(),
)
def forward(self, x):
x = reduce(
x * self.dct_weights, "b c (h h1) (w w1) -> b c h1 w1", "sum", h1=1, w1=1
)
return self.net(x)
class Generator(nn.Module):
def __init__(
self,
*,
image_size,
latent_dim=256,
fmap_max=512,
fmap_inverse_coef=12,
transparent=False,
greyscale=False,
attn_res_layers=[],
freq_chan_attn=False,
syncbatchnorm=False,
antialias=False,
):
super().__init__()
resolution = log2(image_size)
assert is_power_of_two(image_size), "image size must be a power of 2"
# Set the normalization and blur
norm_class = nn.SyncBatchNorm if syncbatchnorm else nn.BatchNorm2d
Blur = nn.Identity if not antialias else Blur
if transparent:
init_channel = 4
elif greyscale:
init_channel = 1
else:
init_channel = 3
self.latent_dim = latent_dim
fmap_max = default(fmap_max, latent_dim)
self.initial_conv = nn.Sequential(
nn.ConvTranspose2d(latent_dim, latent_dim * 2, 4),
norm_class(latent_dim * 2),
nn.GLU(dim=1),
)
num_layers = int(resolution) - 2
features = list(
map(lambda n: (n, 2 ** (fmap_inverse_coef - n)), range(2, num_layers + 2))
)
features = list(map(lambda n: (n[0], min(n[1], fmap_max)), features))
features = list(map(lambda n: 3 if n[0] >= 8 else n[1], features))
features = [latent_dim, *features]
in_out_features = list(zip(features[:-1], features[1:]))
self.res_layers = range(2, num_layers + 2)
self.layers = nn.ModuleList([])
self.res_to_feature_map = dict(zip(self.res_layers, in_out_features))
self.sle_map = ((3, 7), (4, 8), (5, 9), (6, 10))
self.sle_map = list(
filter(lambda t: t[0] <= resolution and t[1] <= resolution, self.sle_map)
)
self.sle_map = dict(self.sle_map)
self.num_layers_spatial_res = 1
for res, (chan_in, chan_out) in zip(self.res_layers, in_out_features):
image_width = 2**res
attn = None
if image_width in attn_res_layers:
attn = PreNorm(chan_in, LinearAttention(chan_in))
sle = None
if res in self.sle_map:
residual_layer = self.sle_map[res]
sle_chan_out = self.res_to_feature_map[residual_layer - 1][-1]
if freq_chan_attn:
sle = FCANet(
chan_in=chan_out, chan_out=sle_chan_out, width=2 ** (res + 1)
)
else:
sle = GlobalContext(chan_in=chan_out, chan_out=sle_chan_out)
layer = nn.ModuleList(
[
nn.Sequential(
PixelShuffleUpsample(chan_in),
Blur(),
Conv2dSame(chan_in, chan_out * 2, 4),
Noise(),
norm_class(chan_out * 2),
nn.GLU(dim=1),
),
sle,
attn,
]
)
self.layers.append(layer)
self.out_conv = nn.Conv2d(features[-1], init_channel, 3, padding=1)
def forward(self, x):
x = rearrange(x, "b c -> b c () ()")
x = self.initial_conv(x)
x = F.normalize(x, dim=1)
residuals = dict()
for res, (up, sle, attn) in zip(self.res_layers, self.layers):
if exists(attn):
x = attn(x) + x
x = up(x)
if exists(sle):
out_res = self.sle_map[res]
residual = sle(x)
residuals[out_res] = residual
next_res = res + 1
if next_res in residuals:
x = x * residuals[next_res]
return self.out_conv(x)
class GlobalContext(nn.Module):
def __init__(self, *, chan_in, chan_out):
super().__init__()
self.to_k = nn.Conv2d(chan_in, 1, 1)
chan_intermediate = max(3, chan_out // 2)
self.net = nn.Sequential(
nn.Conv2d(chan_in, chan_intermediate, 1),
nn.LeakyReLU(0.1),
nn.Conv2d(chan_intermediate, chan_out, 1),
nn.Sigmoid(),
)
def forward(self, x):
context = self.to_k(x)
context = context.flatten(2).softmax(dim=-1)
out = einsum("b i n, b c n -> b c i", context, x.flatten(2))
out = out.unsqueeze(-1)
return self.net(out)
class LinearAttention(nn.Module):
def __init__(self, dim, dim_head=64, heads=8, kernel_size=3):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
self.dim_head = dim_head
inner_dim = dim_head * heads
self.kernel_size = kernel_size
self.nonlin = nn.GELU()
self.to_lin_q = nn.Conv2d(dim, inner_dim, 1, bias=False)
self.to_lin_kv = DepthWiseConv2d(dim, inner_dim * 2, 3, padding=1, bias=False)
self.to_q = nn.Conv2d(dim, inner_dim, 1, bias=False)
self.to_kv = nn.Conv2d(dim, inner_dim * 2, 1, bias=False)
self.to_out = nn.Conv2d(inner_dim * 2, dim, 1)
def forward(self, fmap):
h, x, y = self.heads, *fmap.shape[-2:]
# linear attention
lin_q, lin_k, lin_v = (
self.to_lin_q(fmap),
*self.to_lin_kv(fmap).chunk(2, dim=1),
)
lin_q, lin_k, lin_v = map(
lambda t: rearrange(t, "b (h c) x y -> (b h) (x y) c", h=h),
(lin_q, lin_k, lin_v),
)
lin_q = lin_q.softmax(dim=-1)
lin_k = lin_k.softmax(dim=-2)
lin_q = lin_q * self.scale
context = einsum("b n d, b n e -> b d e", lin_k, lin_v)
lin_out = einsum("b n d, b d e -> b n e", lin_q, context)
lin_out = rearrange(lin_out, "(b h) (x y) d -> b (h d) x y", h=h, x=x, y=y)
# conv-like full attention
q, k, v = (self.to_q(fmap), *self.to_kv(fmap).chunk(2, dim=1))
q, k, v = map(
lambda t: rearrange(t, "b (h c) x y -> (b h) c x y", h=h), (q, k, v)
)
k = F.unfold(k, kernel_size=self.kernel_size, padding=self.kernel_size // 2)
v = F.unfold(v, kernel_size=self.kernel_size, padding=self.kernel_size // 2)
k, v = map(
lambda t: rearrange(t, "b (d j) n -> b n j d", d=self.dim_head), (k, v)
)
q = rearrange(q, "b c ... -> b (...) c") * self.scale
sim = einsum("b i d, b i j d -> b i j", q, k)
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
full_out = einsum("b i j, b i j d -> b i d", attn, v)
full_out = rearrange(full_out, "(b h) (x y) d -> b (h d) x y", h=h, x=x, y=y)
# add outputs of linear attention + conv like full attention
lin_out = self.nonlin(lin_out)
out = torch.cat((lin_out, full_out), dim=1)
return self.to_out(out)
class Noise(nn.Module):
def __init__(self):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1))
def forward(self, x, noise=None):
b, _, h, w, device = *x.shape, x.device
if not exists(noise):
noise = torch.randn(b, 1, h, w, device=device)
return x + self.weight * noise
class PixelShuffleUpsample(nn.Module):
def __init__(self, dim, dim_out=None):
super().__init__()
dim_out = default(dim_out, dim)
conv = nn.Conv2d(dim, dim_out * 4, 1)
self.net = nn.Sequential(conv, nn.SiLU(), nn.PixelShuffle(2))
self.init_conv_(conv)
def init_conv_(self, conv):
o, i, h, w = conv.weight.shape
conv_weight = torch.empty(o // 4, i, h, w)
nn.init.kaiming_uniform_(conv_weight)
conv_weight = repeat(conv_weight, "o ... -> (o 4) ...")
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def forward(self, x):
return self.net(x)
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = ChanNorm(dim)
def forward(self, x):
return self.fn(self.norm(x))
|