File size: 1,629 Bytes
132380a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
datasets:
- yuvalkirstain/pickapic_v2
---
# Diffusion Model Alignment Using Direct Preference Optimization
Direct Preference Optimization (DPO) for text-to-image diffusion models is a method to align diffusion models to text human preferences by directly optimizing on human comparison data. Please check our paper at [Diffusion Model Alignment Using Direct Preference Optimization](https://arxiv.org/abs/2311.12908).
This model is fine-tuned from [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) on offline human preference data [pickapic_v2](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2).
## Code
*Code will come soon!!!*
## SD1.5
We also have a model finedtuned from [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) available at [dpo-sd1.5-text2image-v1](https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1).
## A quick example
```python
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel
import torch
# load pipeline
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")
# load finetuned model
unet_id = "mhdang/dpo-sdxl-text2image-v1"
unet = UNet2DConditionModel.from_pretrained(unet_id, subfolder="unet", torch_dtype=torch.float16)
pipe.unet = unet
pipe = pipe.to("cuda")
prompt = "Two cats playing chess on a tree branch"
image = pipe(prompt, guidance_scale=7.5).images[0].resize((512,512))
image.save("cats_playing_chess.png")
```
More details coming soon. |