File size: 8,945 Bytes
c810120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
from torch import nn

from . import tasks, layers
from ultra.base_nbfnet import BaseNBFNet

class Ultra(nn.Module):

    def __init__(self, rel_model_cfg, entity_model_cfg):
        # kept that because super Ultra sounds cool
        super(Ultra, self).__init__()

        self.relation_model = RelNBFNet(**rel_model_cfg)
        self.entity_model = EntityNBFNet(**entity_model_cfg)

        
    def forward(self, data, batch):
        
        # batch shape: (bs, 1+num_negs, 3)
        # relations are the same all positive and negative triples, so we can extract only one from the first triple among 1+nug_negs
        query_rels = batch[:, 0, 2]
        relation_representations = self.relation_model(data.relation_graph, query=query_rels)
        score = self.entity_model(data, relation_representations, batch)
        
        return score


# NBFNet to work on the graph of relations with 4 fundamental interactions
# Doesn't have the final projection MLP from hidden dim -> 1, returns all node representations 
# of shape [bs, num_rel, hidden]
class RelNBFNet(BaseNBFNet):

    def __init__(self, input_dim, hidden_dims, num_relation=4, **kwargs):
        super().__init__(input_dim, hidden_dims, num_relation, **kwargs)

        self.layers = nn.ModuleList()
        for i in range(len(self.dims) - 1):
            self.layers.append(
                layers.GeneralizedRelationalConv(
                    self.dims[i], self.dims[i + 1], num_relation,
                    self.dims[0], self.message_func, self.aggregate_func, self.layer_norm,
                    self.activation, dependent=False)
                )

        if self.concat_hidden:
            feature_dim = sum(hidden_dims) + input_dim
            self.mlp = nn.Sequential(
                nn.Linear(feature_dim, feature_dim),
                nn.ReLU(),
                nn.Linear(feature_dim, input_dim)
            )

    
    def bellmanford(self, data, h_index, separate_grad=False):
        batch_size = len(h_index)

        # initialize initial nodes (relations of interest in the batcj) with all ones
        query = torch.ones(h_index.shape[0], self.dims[0], device=h_index.device, dtype=torch.float)
        index = h_index.unsqueeze(-1).expand_as(query)

        # initial (boundary) condition - initialize all node states as zeros
        boundary = torch.zeros(batch_size, data.num_nodes, self.dims[0], device=h_index.device)
        #boundary = torch.zeros(data.num_nodes, *query.shape, device=h_index.device)
        # Indicator function: by the scatter operation we put ones as init features of source (index) nodes
        boundary.scatter_add_(1, index.unsqueeze(1), query.unsqueeze(1))
        size = (data.num_nodes, data.num_nodes)
        edge_weight = torch.ones(data.num_edges, device=h_index.device)

        hiddens = []
        edge_weights = []
        layer_input = boundary

        for layer in self.layers:
            # Bellman-Ford iteration, we send the original boundary condition in addition to the updated node states
            hidden = layer(layer_input, query, boundary, data.edge_index, data.edge_type, size, edge_weight)
            if self.short_cut and hidden.shape == layer_input.shape:
                # residual connection here
                hidden = hidden + layer_input
            hiddens.append(hidden)
            edge_weights.append(edge_weight)
            layer_input = hidden

        # original query (relation type) embeddings
        node_query = query.unsqueeze(1).expand(-1, data.num_nodes, -1) # (batch_size, num_nodes, input_dim)
        if self.concat_hidden:
            output = torch.cat(hiddens + [node_query], dim=-1)
            output = self.mlp(output)
        else:
            output = hiddens[-1]

        return {
            "node_feature": output,
            "edge_weights": edge_weights,
        }

    def forward(self, rel_graph, query):

        # message passing and updated node representations (that are in fact relations)
        output = self.bellmanford(rel_graph, h_index=query)["node_feature"]  # (batch_size, num_nodes, hidden_dim)
        
        return output
    

class EntityNBFNet(BaseNBFNet):

    def __init__(self, input_dim, hidden_dims, num_relation=1, **kwargs):

        # dummy num_relation = 1 as we won't use it in the NBFNet layer
        super().__init__(input_dim, hidden_dims, num_relation, **kwargs)

        self.layers = nn.ModuleList()
        for i in range(len(self.dims) - 1):
            self.layers.append(
                layers.GeneralizedRelationalConv(
                    self.dims[i], self.dims[i + 1], num_relation,
                    self.dims[0], self.message_func, self.aggregate_func, self.layer_norm,
                    self.activation, dependent=False, project_relations=True)
            )

        feature_dim = (sum(hidden_dims) if self.concat_hidden else hidden_dims[-1]) + input_dim
        self.mlp = nn.Sequential()
        mlp = []
        for i in range(self.num_mlp_layers - 1):
            mlp.append(nn.Linear(feature_dim, feature_dim))
            mlp.append(nn.ReLU())
        mlp.append(nn.Linear(feature_dim, 1))
        self.mlp = nn.Sequential(*mlp)

    
    def bellmanford(self, data, h_index, r_index, separate_grad=False):
        batch_size = len(r_index)

        # initialize queries (relation types of the given triples)
        query = self.query[torch.arange(batch_size, device=r_index.device), r_index]
        index = h_index.unsqueeze(-1).expand_as(query)

        # initial (boundary) condition - initialize all node states as zeros
        boundary = torch.zeros(batch_size, data.num_nodes, self.dims[0], device=h_index.device)
        # by the scatter operation we put query (relation) embeddings as init features of source (index) nodes
        boundary.scatter_add_(1, index.unsqueeze(1), query.unsqueeze(1))
        
        size = (data.num_nodes, data.num_nodes)
        edge_weight = torch.ones(data.num_edges, device=h_index.device)

        hiddens = []
        edge_weights = []
        layer_input = boundary

        for layer in self.layers:

            # for visualization
            if separate_grad:
                edge_weight = edge_weight.clone().requires_grad_()

            # Bellman-Ford iteration, we send the original boundary condition in addition to the updated node states
            hidden = layer(layer_input, query, boundary, data.edge_index, data.edge_type, size, edge_weight)
            if self.short_cut and hidden.shape == layer_input.shape:
                # residual connection here
                hidden = hidden + layer_input
            hiddens.append(hidden)
            edge_weights.append(edge_weight)
            layer_input = hidden

        # original query (relation type) embeddings
        node_query = query.unsqueeze(1).expand(-1, data.num_nodes, -1) # (batch_size, num_nodes, input_dim)
        if self.concat_hidden:
            output = torch.cat(hiddens + [node_query], dim=-1)
        else:
            output = torch.cat([hiddens[-1], node_query], dim=-1)

        return {
            "node_feature": output,
            "edge_weights": edge_weights,
        }

    def forward(self, data, relation_representations, batch):
        h_index, t_index, r_index = batch.unbind(-1)

        # initial query representations are those from the relation graph
        self.query = relation_representations

        # initialize relations in each NBFNet layer (with uinque projection internally)
        for layer in self.layers:
            layer.relation = relation_representations

        if self.training:
            # Edge dropout in the training mode
            # here we want to remove immediate edges (head, relation, tail) from the edge_index and edge_types
            # to make NBFNet iteration learn non-trivial paths
            data = self.remove_easy_edges(data, h_index, t_index, r_index)

        shape = h_index.shape
        # turn all triples in a batch into a tail prediction mode
        h_index, t_index, r_index = self.negative_sample_to_tail(h_index, t_index, r_index, num_direct_rel=data.num_relations // 2)
        assert (h_index[:, [0]] == h_index).all()
        assert (r_index[:, [0]] == r_index).all()

        # message passing and updated node representations
        output = self.bellmanford(data, h_index[:, 0], r_index[:, 0])  # (num_nodes, batch_size, feature_dim)
        feature = output["node_feature"]
        index = t_index.unsqueeze(-1).expand(-1, -1, feature.shape[-1])
        # extract representations of tail entities from the updated node states
        feature = feature.gather(1, index)  # (batch_size, num_negative + 1, feature_dim)

        # probability logit for each tail node in the batch
        # (batch_size, num_negative + 1, dim) -> (batch_size, num_negative + 1)
        score = self.mlp(feature).squeeze(-1)
        return score.view(shape)