File size: 15,895 Bytes
c810120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import copy
from collections.abc import Sequence
import torch
from torch import nn, autograd
from torch_scatter import scatter_add
from . import tasks, layers
class BaseNBFNet(nn.Module):
def __init__(self, input_dim, hidden_dims, num_relation, message_func="distmult", aggregate_func="sum",
short_cut=False, layer_norm=False, activation="relu", concat_hidden=False, num_mlp_layer=2,
dependent=False, remove_one_hop=False, num_beam=10, path_topk=10, **kwargs):
super(BaseNBFNet, self).__init__()
if not isinstance(hidden_dims, Sequence):
hidden_dims = [hidden_dims]
self.dims = [input_dim] + list(hidden_dims)
self.num_relation = num_relation
self.short_cut = short_cut # whether to use residual connections between GNN layers
self.concat_hidden = concat_hidden # whether to compute final states as a function of all layer outputs or last
self.remove_one_hop = remove_one_hop # whether to dynamically remove one-hop edges from edge_index
self.num_beam = num_beam
self.path_topk = path_topk
self.message_func = message_func
self.aggregate_func = aggregate_func
self.layer_norm = layer_norm
self.activation = activation
self.num_mlp_layers = num_mlp_layer
# self.layers = nn.ModuleList()
# for i in range(len(self.dims) - 1):
# self.layers.append(layers.GeneralizedRelationalConv(self.dims[i], self.dims[i + 1], num_relation,
# self.dims[0], message_func, aggregate_func, layer_norm,
# activation, dependent))
# feature_dim = (sum(hidden_dims) if concat_hidden else hidden_dims[-1]) + input_dim
# # additional relation embedding which serves as an initial 'query' for the NBFNet forward pass
# # each layer has its own learnable relations matrix, so we send the total number of relations, too
# self.query = nn.Embedding(num_relation, input_dim)
# self.mlp = nn.Sequential()
# mlp = []
# for i in range(num_mlp_layer - 1):
# mlp.append(nn.Linear(feature_dim, feature_dim))
# mlp.append(nn.ReLU())
# mlp.append(nn.Linear(feature_dim, 1))
# self.mlp = nn.Sequential(*mlp)
def remove_easy_edges(self, data, h_index, t_index, r_index=None):
# we remove training edges (we need to predict them at training time) from the edge index
# think of it as a dynamic edge dropout
h_index_ext = torch.cat([h_index, t_index], dim=-1)
t_index_ext = torch.cat([t_index, h_index], dim=-1)
r_index_ext = torch.cat([r_index, r_index + data.num_relations // 2], dim=-1)
if self.remove_one_hop:
# we remove all existing immediate edges between heads and tails in the batch
edge_index = data.edge_index
easy_edge = torch.stack([h_index_ext, t_index_ext]).flatten(1)
index = tasks.edge_match(edge_index, easy_edge)[0]
mask = ~index_to_mask(index, data.num_edges)
else:
# we remove existing immediate edges between heads and tails in the batch with the given relation
edge_index = torch.cat([data.edge_index, data.edge_type.unsqueeze(0)])
# note that here we add relation types r_index_ext to the matching query
easy_edge = torch.stack([h_index_ext, t_index_ext, r_index_ext]).flatten(1)
index = tasks.edge_match(edge_index, easy_edge)[0]
mask = ~index_to_mask(index, data.num_edges)
data = copy.copy(data)
data.edge_index = data.edge_index[:, mask]
data.edge_type = data.edge_type[mask]
return data
def negative_sample_to_tail(self, h_index, t_index, r_index, num_direct_rel):
# convert p(h | t, r) to p(t' | h', r')
# h' = t, r' = r^{-1}, t' = h
is_t_neg = (h_index == h_index[:, [0]]).all(dim=-1, keepdim=True)
new_h_index = torch.where(is_t_neg, h_index, t_index)
new_t_index = torch.where(is_t_neg, t_index, h_index)
new_r_index = torch.where(is_t_neg, r_index, r_index + num_direct_rel)
return new_h_index, new_t_index, new_r_index
def bellmanford(self, data, h_index, r_index, separate_grad=False):
batch_size = len(r_index)
# initialize queries (relation types of the given triples)
query = self.query(r_index)
index = h_index.unsqueeze(-1).expand_as(query)
# initial (boundary) condition - initialize all node states as zeros
boundary = torch.zeros(batch_size, data.num_nodes, self.dims[0], device=h_index.device)
# by the scatter operation we put query (relation) embeddings as init features of source (index) nodes
boundary.scatter_add_(1, index.unsqueeze(1), query.unsqueeze(1))
size = (data.num_nodes, data.num_nodes)
edge_weight = torch.ones(data.num_edges, device=h_index.device)
hiddens = []
edge_weights = []
layer_input = boundary
for layer in self.layers:
if separate_grad:
edge_weight = edge_weight.clone().requires_grad_()
# Bellman-Ford iteration, we send the original boundary condition in addition to the updated node states
hidden = layer(layer_input, query, boundary, data.edge_index, data.edge_type, size, edge_weight)
if self.short_cut and hidden.shape == layer_input.shape:
# residual connection here
hidden = hidden + layer_input
hiddens.append(hidden)
edge_weights.append(edge_weight)
layer_input = hidden
# original query (relation type) embeddings
node_query = query.unsqueeze(1).expand(-1, data.num_nodes, -1) # (batch_size, num_nodes, input_dim)
if self.concat_hidden:
output = torch.cat(hiddens + [node_query], dim=-1)
else:
output = torch.cat([hiddens[-1], node_query], dim=-1)
return {
"node_feature": output,
"edge_weights": edge_weights,
}
def forward(self, data, batch):
h_index, t_index, r_index = batch.unbind(-1)
if self.training:
# Edge dropout in the training mode
# here we want to remove immediate edges (head, relation, tail) from the edge_index and edge_types
# to make NBFNet iteration learn non-trivial paths
data = self.remove_easy_edges(data, h_index, t_index, r_index, data.num_relations // 2)
shape = h_index.shape
# turn all triples in a batch into a tail prediction mode
h_index, t_index, r_index = self.negative_sample_to_tail(h_index, t_index, r_index, num_direct_rel=data.num_relations // 2)
assert (h_index[:, [0]] == h_index).all()
assert (r_index[:, [0]] == r_index).all()
# message passing and updated node representations
output = self.bellmanford(data, h_index[:, 0], r_index[:, 0]) # (num_nodes, batch_size, feature_dim)
feature = output["node_feature"]
index = t_index.unsqueeze(-1).expand(-1, -1, feature.shape[-1])
# extract representations of tail entities from the updated node states
feature = feature.gather(1, index) # (batch_size, num_negative + 1, feature_dim)
# probability logit for each tail node in the batch
# (batch_size, num_negative + 1, dim) -> (batch_size, num_negative + 1)
score = self.mlp(feature).squeeze(-1)
return score.view(shape)
def visualize(self, data, batch):
assert batch.shape == (1, 3)
h_index, t_index, r_index = batch.unbind(-1)
output = self.bellmanford(data, h_index, r_index, separate_grad=True)
feature = output["node_feature"]
edge_weights = output["edge_weights"]
index = t_index.unsqueeze(0).unsqueeze(-1).expand(-1, -1, feature.shape[-1])
feature = feature.gather(1, index).squeeze(0)
score = self.mlp(feature).squeeze(-1)
edge_grads = autograd.grad(score, edge_weights)
distances, back_edges = self.beam_search_distance(data, edge_grads, h_index, t_index, self.num_beam)
paths, weights = self.topk_average_length(distances, back_edges, t_index, self.path_topk)
return paths, weights
@torch.no_grad()
def beam_search_distance(self, data, edge_grads, h_index, t_index, num_beam=10):
# beam search the top-k distance from h to t (and to every other node)
num_nodes = data.num_nodes
input = torch.full((num_nodes, num_beam), float("-inf"), device=h_index.device)
input[h_index, 0] = 0
edge_mask = data.edge_index[0, :] != t_index
distances = []
back_edges = []
for edge_grad in edge_grads:
# we don't allow any path goes out of t once it arrives at t
node_in, node_out = data.edge_index[:, edge_mask]
relation = data.edge_type[edge_mask]
edge_grad = edge_grad[edge_mask]
message = input[node_in] + edge_grad.unsqueeze(-1) # (num_edges, num_beam)
# (num_edges, num_beam, 3)
msg_source = torch.stack([node_in, node_out, relation], dim=-1).unsqueeze(1).expand(-1, num_beam, -1)
# (num_edges, num_beam)
is_duplicate = torch.isclose(message.unsqueeze(-1), message.unsqueeze(-2)) & \
(msg_source.unsqueeze(-2) == msg_source.unsqueeze(-3)).all(dim=-1)
# pick the first occurrence as the ranking in the previous node's beam
# this makes deduplication easier later
# and store it in msg_source
is_duplicate = is_duplicate.float() - \
torch.arange(num_beam, dtype=torch.float, device=message.device) / (num_beam + 1)
prev_rank = is_duplicate.argmax(dim=-1, keepdim=True)
msg_source = torch.cat([msg_source, prev_rank], dim=-1) # (num_edges, num_beam, 4)
node_out, order = node_out.sort()
node_out_set = torch.unique(node_out)
# sort messages w.r.t. node_out
message = message[order].flatten() # (num_edges * num_beam)
msg_source = msg_source[order].flatten(0, -2) # (num_edges * num_beam, 4)
size = node_out.bincount(minlength=num_nodes)
msg2out = size_to_index(size[node_out_set] * num_beam)
# deduplicate messages that are from the same source and the same beam
is_duplicate = (msg_source[1:] == msg_source[:-1]).all(dim=-1)
is_duplicate = torch.cat([torch.zeros(1, dtype=torch.bool, device=message.device), is_duplicate])
message = message[~is_duplicate]
msg_source = msg_source[~is_duplicate]
msg2out = msg2out[~is_duplicate]
size = msg2out.bincount(minlength=len(node_out_set))
if not torch.isinf(message).all():
# take the topk messages from the neighborhood
# distance: (len(node_out_set) * num_beam)
distance, rel_index = scatter_topk(message, size, k=num_beam)
abs_index = rel_index + (size.cumsum(0) - size).unsqueeze(-1)
# store msg_source for backtracking
back_edge = msg_source[abs_index] # (len(node_out_set) * num_beam, 4)
distance = distance.view(len(node_out_set), num_beam)
back_edge = back_edge.view(len(node_out_set), num_beam, 4)
# scatter distance / back_edge back to all nodes
distance = scatter_add(distance, node_out_set, dim=0, dim_size=num_nodes) # (num_nodes, num_beam)
back_edge = scatter_add(back_edge, node_out_set, dim=0, dim_size=num_nodes) # (num_nodes, num_beam, 4)
else:
distance = torch.full((num_nodes, num_beam), float("-inf"), device=message.device)
back_edge = torch.zeros(num_nodes, num_beam, 4, dtype=torch.long, device=message.device)
distances.append(distance)
back_edges.append(back_edge)
input = distance
return distances, back_edges
def topk_average_length(self, distances, back_edges, t_index, k=10):
# backtrack distances and back_edges to generate the paths
paths = []
average_lengths = []
for i in range(len(distances)):
distance, order = distances[i][t_index].flatten(0, -1).sort(descending=True)
back_edge = back_edges[i][t_index].flatten(0, -2)[order]
for d, (h, t, r, prev_rank) in zip(distance[:k].tolist(), back_edge[:k].tolist()):
if d == float("-inf"):
break
path = [(h, t, r)]
for j in range(i - 1, -1, -1):
h, t, r, prev_rank = back_edges[j][h, prev_rank].tolist()
path.append((h, t, r))
paths.append(path[::-1])
average_lengths.append(d / len(path))
if paths:
average_lengths, paths = zip(*sorted(zip(average_lengths, paths), reverse=True)[:k])
return paths, average_lengths
def index_to_mask(index, size):
index = index.view(-1)
size = int(index.max()) + 1 if size is None else size
mask = index.new_zeros(size, dtype=torch.bool)
mask[index] = True
return mask
def size_to_index(size):
range = torch.arange(len(size), device=size.device)
index2sample = range.repeat_interleave(size)
return index2sample
def multi_slice_mask(starts, ends, length):
values = torch.cat([torch.ones_like(starts), -torch.ones_like(ends)])
slices = torch.cat([starts, ends])
mask = scatter_add(values, slices, dim=0, dim_size=length + 1)[:-1]
mask = mask.cumsum(0).bool()
return mask
def scatter_extend(data, size, input, input_size):
new_size = size + input_size
new_cum_size = new_size.cumsum(0)
new_data = torch.zeros(new_cum_size[-1], *data.shape[1:], dtype=data.dtype, device=data.device)
starts = new_cum_size - new_size
ends = starts + size
index = multi_slice_mask(starts, ends, new_cum_size[-1])
new_data[index] = data
new_data[~index] = input
return new_data, new_size
def scatter_topk(input, size, k, largest=True):
index2graph = size_to_index(size)
index2graph = index2graph.view([-1] + [1] * (input.ndim - 1))
mask = ~torch.isinf(input)
max = input[mask].max().item()
min = input[mask].min().item()
safe_input = input.clamp(2 * min - max, 2 * max - min)
offset = (max - min) * 4
if largest:
offset = -offset
input_ext = safe_input + offset * index2graph
index_ext = input_ext.argsort(dim=0, descending=largest)
num_actual = size.clamp(max=k)
num_padding = k - num_actual
starts = size.cumsum(0) - size
ends = starts + num_actual
mask = multi_slice_mask(starts, ends, len(index_ext)).nonzero().flatten()
if (num_padding > 0).any():
# special case: size < k, pad with the last valid index
padding = ends - 1
padding2graph = size_to_index(num_padding)
mask = scatter_extend(mask, num_actual, padding[padding2graph], num_padding)[0]
index = index_ext[mask] # (N * k, ...)
value = input.gather(0, index)
if isinstance(k, torch.Tensor) and k.shape == size.shape:
value = value.view(-1, *input.shape[1:])
index = index.view(-1, *input.shape[1:])
index = index - (size.cumsum(0) - size).repeat_interleave(k).view([-1] + [1] * (index.ndim - 1))
else:
value = value.view(-1, k, *input.shape[1:])
index = index.view(-1, k, *input.shape[1:])
index = index - (size.cumsum(0) - size).view([-1] + [1] * (index.ndim - 1))
return value, index |