File size: 47,570 Bytes
c810120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 |
import os
import csv
import shutil
import torch
from torch_geometric.data import Data, InMemoryDataset, download_url, extract_zip
from torch_geometric.datasets import RelLinkPredDataset, WordNet18RR
from ultra.tasks import build_relation_graph
class GrailInductiveDataset(InMemoryDataset):
def __init__(self, root, version, transform=None, pre_transform=build_relation_graph, merge_valid_test=True):
self.version = version
assert version in ["v1", "v2", "v3", "v4"]
# by default, most models on Grail datasets merge inductive valid and test splits as the final test split
# with this choice, the validation set is that of the transductive train (on the seen graph)
# by default it's turned on but you can experiment with turning this option off
# you'll need to delete the processed datasets then and re-run to cache a new dataset
self.merge_valid_test = merge_valid_test
super().__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def num_relations(self):
return int(self.data.edge_type.max()) + 1
@property
def raw_dir(self):
return os.path.join(self.root, "grail", self.name, self.version, "raw")
@property
def processed_dir(self):
return os.path.join(self.root, "grail", self.name, self.version, "processed")
@property
def processed_file_names(self):
return "data.pt"
@property
def raw_file_names(self):
return [
"train_ind.txt", "valid_ind.txt", "test_ind.txt", "train.txt", "valid.txt"
]
def download(self):
for url, path in zip(self.urls, self.raw_paths):
download_path = download_url(url % self.version, self.raw_dir)
os.rename(download_path, path)
def process(self):
test_files = self.raw_paths[:3]
train_files = self.raw_paths[3:]
inv_train_entity_vocab = {}
inv_test_entity_vocab = {}
inv_relation_vocab = {}
triplets = []
num_samples = []
for txt_file in train_files:
with open(txt_file, "r") as fin:
num_sample = 0
for line in fin:
h_token, r_token, t_token = line.strip().split("\t")
if h_token not in inv_train_entity_vocab:
inv_train_entity_vocab[h_token] = len(inv_train_entity_vocab)
h = inv_train_entity_vocab[h_token]
if r_token not in inv_relation_vocab:
inv_relation_vocab[r_token] = len(inv_relation_vocab)
r = inv_relation_vocab[r_token]
if t_token not in inv_train_entity_vocab:
inv_train_entity_vocab[t_token] = len(inv_train_entity_vocab)
t = inv_train_entity_vocab[t_token]
triplets.append((h, t, r))
num_sample += 1
num_samples.append(num_sample)
for txt_file in test_files:
with open(txt_file, "r") as fin:
num_sample = 0
for line in fin:
h_token, r_token, t_token = line.strip().split("\t")
if h_token not in inv_test_entity_vocab:
inv_test_entity_vocab[h_token] = len(inv_test_entity_vocab)
h = inv_test_entity_vocab[h_token]
assert r_token in inv_relation_vocab
r = inv_relation_vocab[r_token]
if t_token not in inv_test_entity_vocab:
inv_test_entity_vocab[t_token] = len(inv_test_entity_vocab)
t = inv_test_entity_vocab[t_token]
triplets.append((h, t, r))
num_sample += 1
num_samples.append(num_sample)
triplets = torch.tensor(triplets)
edge_index = triplets[:, :2].t()
edge_type = triplets[:, 2]
num_relations = int(edge_type.max()) + 1
# creating fact graphs - those are graphs sent to a model, based on which we'll predict missing facts
# also, those fact graphs will be used for filtered evaluation
train_fact_slice = slice(None, sum(num_samples[:1]))
test_fact_slice = slice(sum(num_samples[:2]), sum(num_samples[:3]))
train_fact_index = edge_index[:, train_fact_slice]
train_fact_type = edge_type[train_fact_slice]
test_fact_index = edge_index[:, test_fact_slice]
test_fact_type = edge_type[test_fact_slice]
# add flipped triplets for the fact graphs
train_fact_index = torch.cat([train_fact_index, train_fact_index.flip(0)], dim=-1)
train_fact_type = torch.cat([train_fact_type, train_fact_type + num_relations])
test_fact_index = torch.cat([test_fact_index, test_fact_index.flip(0)], dim=-1)
test_fact_type = torch.cat([test_fact_type, test_fact_type + num_relations])
train_slice = slice(None, sum(num_samples[:1]))
valid_slice = slice(sum(num_samples[:1]), sum(num_samples[:2]))
# by default, SOTA models on Grail datasets merge inductive valid and test splits as the final test split
# with this choice, the validation set is that of the transductive train (on the seen graph)
# by default it's turned on but you can experiment with turning this option off
test_slice = slice(sum(num_samples[:3]), sum(num_samples)) if self.merge_valid_test else slice(sum(num_samples[:4]), sum(num_samples))
train_data = Data(edge_index=train_fact_index, edge_type=train_fact_type, num_nodes=len(inv_train_entity_vocab),
target_edge_index=edge_index[:, train_slice], target_edge_type=edge_type[train_slice], num_relations=num_relations*2)
valid_data = Data(edge_index=train_fact_index, edge_type=train_fact_type, num_nodes=len(inv_train_entity_vocab),
target_edge_index=edge_index[:, valid_slice], target_edge_type=edge_type[valid_slice], num_relations=num_relations*2)
test_data = Data(edge_index=test_fact_index, edge_type=test_fact_type, num_nodes=len(inv_test_entity_vocab),
target_edge_index=edge_index[:, test_slice], target_edge_type=edge_type[test_slice], num_relations=num_relations*2)
if self.pre_transform is not None:
train_data = self.pre_transform(train_data)
valid_data = self.pre_transform(valid_data)
test_data = self.pre_transform(test_data)
torch.save((self.collate([train_data, valid_data, test_data])), self.processed_paths[0])
def __repr__(self):
return "%s(%s)" % (self.name, self.version)
class FB15k237Inductive(GrailInductiveDataset):
urls = [
"https://raw.githubusercontent.com/kkteru/grail/master/data/fb237_%s_ind/train.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/fb237_%s_ind/valid.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/fb237_%s_ind/test.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/fb237_%s/train.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/fb237_%s/valid.txt"
]
name = "IndFB15k237"
def __init__(self, root, version):
super().__init__(root, version)
class WN18RRInductive(GrailInductiveDataset):
urls = [
"https://raw.githubusercontent.com/kkteru/grail/master/data/WN18RR_%s_ind/train.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/WN18RR_%s_ind/valid.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/WN18RR_%s_ind/test.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/WN18RR_%s/train.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/WN18RR_%s/valid.txt"
]
name = "IndWN18RR"
def __init__(self, root, version):
super().__init__(root, version)
class NELLInductive(GrailInductiveDataset):
urls = [
"https://raw.githubusercontent.com/kkteru/grail/master/data/nell_%s_ind/train.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/nell_%s_ind/valid.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/nell_%s_ind/test.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/nell_%s/train.txt",
"https://raw.githubusercontent.com/kkteru/grail/master/data/nell_%s/valid.txt"
]
name = "IndNELL"
def __init__(self, root, version):
super().__init__(root, version)
def FB15k237(root):
dataset = RelLinkPredDataset(name="FB15k-237", root=root+"/fb15k237/")
data = dataset.data
train_data = Data(edge_index=data.edge_index, edge_type=data.edge_type, num_nodes=data.num_nodes,
target_edge_index=data.train_edge_index, target_edge_type=data.train_edge_type,
num_relations=dataset.num_relations)
valid_data = Data(edge_index=data.edge_index, edge_type=data.edge_type, num_nodes=data.num_nodes,
target_edge_index=data.valid_edge_index, target_edge_type=data.valid_edge_type,
num_relations=dataset.num_relations)
test_data = Data(edge_index=data.edge_index, edge_type=data.edge_type, num_nodes=data.num_nodes,
target_edge_index=data.test_edge_index, target_edge_type=data.test_edge_type,
num_relations=dataset.num_relations)
# build relation graphs
train_data = build_relation_graph(train_data)
valid_data = build_relation_graph(valid_data)
test_data = build_relation_graph(test_data)
dataset.data, dataset.slices = dataset.collate([train_data, valid_data, test_data])
return dataset
def WN18RR(root):
dataset = WordNet18RR(root=root+"/wn18rr/")
# convert wn18rr into the same format as fb15k-237
data = dataset.data
num_nodes = int(data.edge_index.max()) + 1
num_relations = int(data.edge_type.max()) + 1
edge_index = data.edge_index[:, data.train_mask]
edge_type = data.edge_type[data.train_mask]
edge_index = torch.cat([edge_index, edge_index.flip(0)], dim=-1)
edge_type = torch.cat([edge_type, edge_type + num_relations])
train_data = Data(edge_index=edge_index, edge_type=edge_type, num_nodes=num_nodes,
target_edge_index=data.edge_index[:, data.train_mask],
target_edge_type=data.edge_type[data.train_mask],
num_relations=num_relations*2)
valid_data = Data(edge_index=edge_index, edge_type=edge_type, num_nodes=num_nodes,
target_edge_index=data.edge_index[:, data.val_mask],
target_edge_type=data.edge_type[data.val_mask],
num_relations=num_relations*2)
test_data = Data(edge_index=edge_index, edge_type=edge_type, num_nodes=num_nodes,
target_edge_index=data.edge_index[:, data.test_mask],
target_edge_type=data.edge_type[data.test_mask],
num_relations=num_relations*2)
# build relation graphs
train_data = build_relation_graph(train_data)
valid_data = build_relation_graph(valid_data)
test_data = build_relation_graph(test_data)
dataset.data, dataset.slices = dataset.collate([train_data, valid_data, test_data])
dataset.num_relations = num_relations * 2
return dataset
class TransductiveDataset(InMemoryDataset):
delimiter = None
def __init__(self, root, transform=None, pre_transform=build_relation_graph, **kwargs):
super().__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
return ["train.txt", "valid.txt", "test.txt"]
def download(self):
for url, path in zip(self.urls, self.raw_paths):
download_path = download_url(url, self.raw_dir)
os.rename(download_path, path)
def load_file(self, triplet_file, inv_entity_vocab={}, inv_rel_vocab={}):
triplets = []
entity_cnt, rel_cnt = len(inv_entity_vocab), len(inv_rel_vocab)
with open(triplet_file, "r", encoding="utf-8") as fin:
for l in fin:
u, r, v = l.split() if self.delimiter is None else l.strip().split(self.delimiter)
if u not in inv_entity_vocab:
inv_entity_vocab[u] = entity_cnt
entity_cnt += 1
if v not in inv_entity_vocab:
inv_entity_vocab[v] = entity_cnt
entity_cnt += 1
if r not in inv_rel_vocab:
inv_rel_vocab[r] = rel_cnt
rel_cnt += 1
u, r, v = inv_entity_vocab[u], inv_rel_vocab[r], inv_entity_vocab[v]
triplets.append((u, v, r))
return {
"triplets": triplets,
"num_node": len(inv_entity_vocab), #entity_cnt,
"num_relation": rel_cnt,
"inv_entity_vocab": inv_entity_vocab,
"inv_rel_vocab": inv_rel_vocab
}
# default loading procedure: process train/valid/test files, create graphs from them
def process(self):
train_files = self.raw_paths[:3]
train_results = self.load_file(train_files[0], inv_entity_vocab={}, inv_rel_vocab={})
valid_results = self.load_file(train_files[1],
train_results["inv_entity_vocab"], train_results["inv_rel_vocab"])
test_results = self.load_file(train_files[2],
train_results["inv_entity_vocab"], train_results["inv_rel_vocab"])
# in some datasets, there are several new nodes in the test set, eg 123,143 YAGO train adn 123,182 in YAGO test
# for consistency with other experimental results, we'll include those in the full vocab and num nodes
num_node = test_results["num_node"]
# the same for rels: in most cases train == test for transductive
# for AristoV4 train rels 1593, test 1604
num_relations = test_results["num_relation"]
train_triplets = train_results["triplets"]
valid_triplets = valid_results["triplets"]
test_triplets = test_results["triplets"]
train_target_edges = torch.tensor([[t[0], t[1]] for t in train_triplets], dtype=torch.long).t()
train_target_etypes = torch.tensor([t[2] for t in train_triplets])
valid_edges = torch.tensor([[t[0], t[1]] for t in valid_triplets], dtype=torch.long).t()
valid_etypes = torch.tensor([t[2] for t in valid_triplets])
test_edges = torch.tensor([[t[0], t[1]] for t in test_triplets], dtype=torch.long).t()
test_etypes = torch.tensor([t[2] for t in test_triplets])
train_edges = torch.cat([train_target_edges, train_target_edges.flip(0)], dim=1)
train_etypes = torch.cat([train_target_etypes, train_target_etypes+num_relations])
train_data = Data(edge_index=train_edges, edge_type=train_etypes, num_nodes=num_node,
target_edge_index=train_target_edges, target_edge_type=train_target_etypes, num_relations=num_relations*2)
valid_data = Data(edge_index=train_edges, edge_type=train_etypes, num_nodes=num_node,
target_edge_index=valid_edges, target_edge_type=valid_etypes, num_relations=num_relations*2)
test_data = Data(edge_index=train_edges, edge_type=train_etypes, num_nodes=num_node,
target_edge_index=test_edges, target_edge_type=test_etypes, num_relations=num_relations*2)
# build graphs of relations
if self.pre_transform is not None:
train_data = self.pre_transform(train_data)
valid_data = self.pre_transform(valid_data)
test_data = self.pre_transform(test_data)
torch.save((self.collate([train_data, valid_data, test_data])), self.processed_paths[0])
def __repr__(self):
return "%s()" % (self.name)
@property
def num_relations(self):
return int(self.data.edge_type.max()) + 1
@property
def raw_dir(self):
return os.path.join(self.root, self.name, "raw")
@property
def processed_dir(self):
return os.path.join(self.root, self.name, "processed")
@property
def processed_file_names(self):
return "data.pt"
class CoDEx(TransductiveDataset):
name = "codex"
urls = [
"https://raw.githubusercontent.com/tsafavi/codex/master/data/triples/%s/train.txt",
"https://raw.githubusercontent.com/tsafavi/codex/master/data/triples/%s/valid.txt",
"https://raw.githubusercontent.com/tsafavi/codex/master/data/triples/%s/test.txt",
]
def download(self):
for url, path in zip(self.urls, self.raw_paths):
download_path = download_url(url % self.name, self.raw_dir)
os.rename(download_path, path)
class CoDExSmall(CoDEx):
"""
#node: 2034
#edge: 36543
#relation: 42
"""
url = "https://zenodo.org/record/4281094/files/codex-s.tar.gz"
md5 = "63cd8186fc2aeddc154e20cf4a10087e"
name = "codex-s"
def __init__(self, root):
super(CoDExSmall, self).__init__(root=root, size='s')
class CoDExMedium(CoDEx):
"""
#node: 17050
#edge: 206205
#relation: 51
"""
url = "https://zenodo.org/record/4281094/files/codex-m.tar.gz"
md5 = "43e561cfdca1c6ad9cc2f5b1ca4add76"
name = "codex-m"
def __init__(self, root):
super(CoDExMedium, self).__init__(root=root, size='m')
class CoDExLarge(CoDEx):
"""
#node: 77951
#edge: 612437
#relation: 69
"""
url = "https://zenodo.org/record/4281094/files/codex-l.tar.gz"
md5 = "9a10f4458c4bd2b16ef9b92b677e0d71"
name = "codex-l"
def __init__(self, root):
super(CoDExLarge, self).__init__(root=root, size='l')
class NELL995(TransductiveDataset):
# from the RED-GNN paper https://github.com/LARS-research/RED-GNN/tree/main/transductive/data/nell
# the OG dumps were found to have test set leakages
# training set is made out of facts+train files, so we sum up their samples to build one training graph
urls = [
"https://raw.githubusercontent.com/LARS-research/RED-GNN/main/transductive/data/nell/facts.txt",
"https://raw.githubusercontent.com/LARS-research/RED-GNN/main/transductive/data/nell/train.txt",
"https://raw.githubusercontent.com/LARS-research/RED-GNN/main/transductive/data/nell/valid.txt",
"https://raw.githubusercontent.com/LARS-research/RED-GNN/main/transductive/data/nell/test.txt",
]
name = "nell995"
@property
def raw_file_names(self):
return ["facts.txt", "train.txt", "valid.txt", "test.txt"]
def process(self):
train_files = self.raw_paths[:4]
facts_results = self.load_file(train_files[0], inv_entity_vocab={}, inv_rel_vocab={})
train_results = self.load_file(train_files[1], facts_results["inv_entity_vocab"], facts_results["inv_rel_vocab"])
valid_results = self.load_file(train_files[2], train_results["inv_entity_vocab"], train_results["inv_rel_vocab"])
test_results = self.load_file(train_files[3], train_results["inv_entity_vocab"], train_results["inv_rel_vocab"])
num_node = valid_results["num_node"]
num_relations = train_results["num_relation"]
train_triplets = facts_results["triplets"] + train_results["triplets"]
valid_triplets = valid_results["triplets"]
test_triplets = test_results["triplets"]
train_target_edges = torch.tensor([[t[0], t[1]] for t in train_triplets], dtype=torch.long).t()
train_target_etypes = torch.tensor([t[2] for t in train_triplets])
valid_edges = torch.tensor([[t[0], t[1]] for t in valid_triplets], dtype=torch.long).t()
valid_etypes = torch.tensor([t[2] for t in valid_triplets])
test_edges = torch.tensor([[t[0], t[1]] for t in test_triplets], dtype=torch.long).t()
test_etypes = torch.tensor([t[2] for t in test_triplets])
train_edges = torch.cat([train_target_edges, train_target_edges.flip(0)], dim=1)
train_etypes = torch.cat([train_target_etypes, train_target_etypes+num_relations])
train_data = Data(edge_index=train_edges, edge_type=train_etypes, num_nodes=num_node,
target_edge_index=train_target_edges, target_edge_type=train_target_etypes, num_relations=num_relations*2)
valid_data = Data(edge_index=train_edges, edge_type=train_etypes, num_nodes=num_node,
target_edge_index=valid_edges, target_edge_type=valid_etypes, num_relations=num_relations*2)
test_data = Data(edge_index=train_edges, edge_type=train_etypes, num_nodes=num_node,
target_edge_index=test_edges, target_edge_type=test_etypes, num_relations=num_relations*2)
# build graphs of relations
if self.pre_transform is not None:
train_data = self.pre_transform(train_data)
valid_data = self.pre_transform(valid_data)
test_data = self.pre_transform(test_data)
torch.save((self.collate([train_data, valid_data, test_data])), self.processed_paths[0])
class ConceptNet100k(TransductiveDataset):
urls = [
"https://raw.githubusercontent.com/guojiapub/BiQUE/master/src_data/conceptnet-100k/train",
"https://raw.githubusercontent.com/guojiapub/BiQUE/master/src_data/conceptnet-100k/valid",
"https://raw.githubusercontent.com/guojiapub/BiQUE/master/src_data/conceptnet-100k/test",
]
name = "cnet100k"
delimiter = "\t"
class DBpedia100k(TransductiveDataset):
urls = [
"https://raw.githubusercontent.com/iieir-km/ComplEx-NNE_AER/master/datasets/DB100K/_train.txt",
"https://raw.githubusercontent.com/iieir-km/ComplEx-NNE_AER/master/datasets/DB100K/_valid.txt",
"https://raw.githubusercontent.com/iieir-km/ComplEx-NNE_AER/master/datasets/DB100K/_test.txt",
]
name = "dbp100k"
class YAGO310(TransductiveDataset):
urls = [
"https://raw.githubusercontent.com/DeepGraphLearning/KnowledgeGraphEmbedding/master/data/YAGO3-10/train.txt",
"https://raw.githubusercontent.com/DeepGraphLearning/KnowledgeGraphEmbedding/master/data/YAGO3-10/valid.txt",
"https://raw.githubusercontent.com/DeepGraphLearning/KnowledgeGraphEmbedding/master/data/YAGO3-10/test.txt",
]
name = "yago310"
class Hetionet(TransductiveDataset):
urls = [
"https://www.dropbox.com/s/y47bt9oq57h6l5k/train.txt?dl=1",
"https://www.dropbox.com/s/a0pbrx9tz3dgsff/valid.txt?dl=1",
"https://www.dropbox.com/s/4dhrvg3fyq5tnu4/test.txt?dl=1",
]
name = "hetionet"
class AristoV4(TransductiveDataset):
url = "https://zenodo.org/record/5942560/files/aristo-v4.zip"
name = "aristov4"
delimiter = "\t"
def download(self):
download_path = download_url(self.url, self.raw_dir)
extract_zip(download_path, self.raw_dir)
os.unlink(download_path)
for oldname, newname in zip(['train', 'valid', 'test'], self.raw_paths):
os.rename(os.path.join(self.raw_dir, oldname), newname)
class SparserKG(TransductiveDataset):
# 5 datasets based on FB/NELL/WD, introduced in https://github.com/THU-KEG/DacKGR
# re-writing the loading function because dumps are in the format (h, t, r) while the standard is (h, r, t)
url = "https://raw.githubusercontent.com/THU-KEG/DacKGR/master/data.zip"
delimiter = "\t"
base_name = "SparseKG"
@property
def raw_dir(self):
return os.path.join(self.root, self.base_name, self.name, "raw")
@property
def processed_dir(self):
return os.path.join(self.root, self.base_name, self.name, "processed")
def download(self):
base_path = os.path.join(self.root, self.base_name)
download_path = download_url(self.url, base_path)
extract_zip(download_path, base_path)
for dsname in ['NELL23K', 'WD-singer', 'FB15K-237-10', 'FB15K-237-20', 'FB15K-237-50']:
for oldname, newname in zip(['train.triples', 'dev.triples', 'test.triples'], self.raw_file_names):
os.renames(os.path.join(base_path, "data", dsname, oldname), os.path.join(base_path, dsname, "raw", newname))
shutil.rmtree(os.path.join(base_path, "data"))
def load_file(self, triplet_file, inv_entity_vocab={}, inv_rel_vocab={}):
triplets = []
entity_cnt, rel_cnt = len(inv_entity_vocab), len(inv_rel_vocab)
with open(triplet_file, "r", encoding="utf-8") as fin:
for l in fin:
u, v, r = l.split() if self.delimiter is None else l.strip().split(self.delimiter)
if u not in inv_entity_vocab:
inv_entity_vocab[u] = entity_cnt
entity_cnt += 1
if v not in inv_entity_vocab:
inv_entity_vocab[v] = entity_cnt
entity_cnt += 1
if r not in inv_rel_vocab:
inv_rel_vocab[r] = rel_cnt
rel_cnt += 1
u, r, v = inv_entity_vocab[u], inv_rel_vocab[r], inv_entity_vocab[v]
triplets.append((u, v, r))
return {
"triplets": triplets,
"num_node": len(inv_entity_vocab), #entity_cnt,
"num_relation": rel_cnt,
"inv_entity_vocab": inv_entity_vocab,
"inv_rel_vocab": inv_rel_vocab
}
class WDsinger(SparserKG):
name = "WD-singer"
class NELL23k(SparserKG):
name = "NELL23K"
class FB15k237_10(SparserKG):
name = "FB15K-237-10"
class FB15k237_20(SparserKG):
name = "FB15K-237-20"
class FB15k237_50(SparserKG):
name = "FB15K-237-50"
class InductiveDataset(InMemoryDataset):
delimiter = None
# some datasets (4 from Hamaguchi et al and Indigo) have validation set based off the train graph, not inference
valid_on_inf = True #
def __init__(self, root, version, transform=None, pre_transform=build_relation_graph, **kwargs):
self.version = str(version)
super().__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
def download(self):
for url, path in zip(self.urls, self.raw_paths):
download_path = download_url(url % self.version, self.raw_dir)
os.rename(download_path, path)
def load_file(self, triplet_file, inv_entity_vocab={}, inv_rel_vocab={}):
triplets = []
entity_cnt, rel_cnt = len(inv_entity_vocab), len(inv_rel_vocab)
with open(triplet_file, "r", encoding="utf-8") as fin:
for l in fin:
u, r, v = l.split() if self.delimiter is None else l.strip().split(self.delimiter)
if u not in inv_entity_vocab:
inv_entity_vocab[u] = entity_cnt
entity_cnt += 1
if v not in inv_entity_vocab:
inv_entity_vocab[v] = entity_cnt
entity_cnt += 1
if r not in inv_rel_vocab:
inv_rel_vocab[r] = rel_cnt
rel_cnt += 1
u, r, v = inv_entity_vocab[u], inv_rel_vocab[r], inv_entity_vocab[v]
triplets.append((u, v, r))
return {
"triplets": triplets,
"num_node": len(inv_entity_vocab), #entity_cnt,
"num_relation": rel_cnt,
"inv_entity_vocab": inv_entity_vocab,
"inv_rel_vocab": inv_rel_vocab
}
def process(self):
train_files = self.raw_paths[:4]
train_res = self.load_file(train_files[0], inv_entity_vocab={}, inv_rel_vocab={})
inference_res = self.load_file(train_files[1], inv_entity_vocab={}, inv_rel_vocab={})
valid_res = self.load_file(
train_files[2],
inference_res["inv_entity_vocab"] if self.valid_on_inf else train_res["inv_entity_vocab"],
inference_res["inv_rel_vocab"] if self.valid_on_inf else train_res["inv_rel_vocab"]
)
test_res = self.load_file(train_files[3], inference_res["inv_entity_vocab"], inference_res["inv_rel_vocab"])
num_train_nodes, num_train_rels = train_res["num_node"], train_res["num_relation"]
inference_num_nodes, inference_num_rels = test_res["num_node"], test_res["num_relation"]
train_edges, inf_graph, inf_valid_edges, inf_test_edges = train_res["triplets"], inference_res["triplets"], valid_res["triplets"], test_res["triplets"]
train_target_edges = torch.tensor([[t[0], t[1]] for t in train_edges], dtype=torch.long).t()
train_target_etypes = torch.tensor([t[2] for t in train_edges])
train_fact_index = torch.cat([train_target_edges, train_target_edges.flip(0)], dim=1)
train_fact_type = torch.cat([train_target_etypes, train_target_etypes + num_train_rels])
inf_edges = torch.tensor([[t[0], t[1]] for t in inf_graph], dtype=torch.long).t()
inf_edges = torch.cat([inf_edges, inf_edges.flip(0)], dim=1)
inf_etypes = torch.tensor([t[2] for t in inf_graph])
inf_etypes = torch.cat([inf_etypes, inf_etypes + inference_num_rels])
inf_valid_edges = torch.tensor(inf_valid_edges, dtype=torch.long)
inf_test_edges = torch.tensor(inf_test_edges, dtype=torch.long)
train_data = Data(edge_index=train_fact_index, edge_type=train_fact_type, num_nodes=num_train_nodes,
target_edge_index=train_target_edges, target_edge_type=train_target_etypes, num_relations=num_train_rels*2)
valid_data = Data(edge_index=inf_edges if self.valid_on_inf else train_fact_index,
edge_type=inf_etypes if self.valid_on_inf else train_fact_type,
num_nodes=inference_num_nodes if self.valid_on_inf else num_train_nodes,
target_edge_index=inf_valid_edges[:, :2].T,
target_edge_type=inf_valid_edges[:, 2],
num_relations=inference_num_rels*2 if self.valid_on_inf else num_train_rels*2)
test_data = Data(edge_index=inf_edges, edge_type=inf_etypes, num_nodes=inference_num_nodes,
target_edge_index=inf_test_edges[:, :2].T, target_edge_type=inf_test_edges[:, 2], num_relations=inference_num_rels*2)
if self.pre_transform is not None:
train_data = self.pre_transform(train_data)
valid_data = self.pre_transform(valid_data)
test_data = self.pre_transform(test_data)
torch.save((self.collate([train_data, valid_data, test_data])), self.processed_paths[0])
@property
def num_relations(self):
return int(self.data.edge_type.max()) + 1
@property
def raw_dir(self):
return os.path.join(self.root, self.name, self.version, "raw")
@property
def processed_dir(self):
return os.path.join(self.root, self.name, self.version, "processed")
@property
def raw_file_names(self):
return [
"transductive_train.txt", "inference_graph.txt", "inf_valid.txt", "inf_test.txt"
]
@property
def processed_file_names(self):
return "data.pt"
def __repr__(self):
return "%s(%s)" % (self.name, self.version)
class IngramInductive(InductiveDataset):
@property
def raw_dir(self):
return os.path.join(self.root, "ingram", self.name, self.version, "raw")
@property
def processed_dir(self):
return os.path.join(self.root, "ingram", self.name, self.version, "processed")
class FBIngram(IngramInductive):
urls = [
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/FB-%s/train.txt",
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/FB-%s/msg.txt",
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/FB-%s/valid.txt",
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/FB-%s/test.txt",
]
name = "fb"
class WKIngram(IngramInductive):
urls = [
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/WK-%s/train.txt",
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/WK-%s/msg.txt",
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/WK-%s/valid.txt",
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/WK-%s/test.txt",
]
name = "wk"
class NLIngram(IngramInductive):
urls = [
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/NL-%s/train.txt",
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/NL-%s/msg.txt",
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/NL-%s/valid.txt",
"https://raw.githubusercontent.com/bdi-lab/InGram/master/data/NL-%s/test.txt",
]
name = "nl"
class ILPC2022(InductiveDataset):
urls = [
"https://raw.githubusercontent.com/pykeen/ilpc2022/master/data/%s/train.txt",
"https://raw.githubusercontent.com/pykeen/ilpc2022/master/data/%s/inference.txt",
"https://raw.githubusercontent.com/pykeen/ilpc2022/master/data/%s/inference_validation.txt",
"https://raw.githubusercontent.com/pykeen/ilpc2022/master/data/%s/inference_test.txt",
]
name = "ilpc2022"
class HM(InductiveDataset):
# benchmarks from Hamaguchi et al and Indigo BM
urls = [
"https://raw.githubusercontent.com/shuwen-liu-ox/INDIGO/master/data/%s/train/train.txt",
"https://raw.githubusercontent.com/shuwen-liu-ox/INDIGO/master/data/%s/test/test-graph.txt",
"https://raw.githubusercontent.com/shuwen-liu-ox/INDIGO/master/data/%s/train/valid.txt",
"https://raw.githubusercontent.com/shuwen-liu-ox/INDIGO/master/data/%s/test/test-fact.txt",
]
name = "hm"
versions = {
'1k': "Hamaguchi-BM_both-1000",
'3k': "Hamaguchi-BM_both-3000",
'5k': "Hamaguchi-BM_both-5000",
'indigo': "INDIGO-BM"
}
# in 4 HM graphs, the validation set is based off the training graph, so we'll adjust the dataset creation accordingly
valid_on_inf = False
def __init__(self, root, version, **kwargs):
version = self.versions[version]
super().__init__(root, version, **kwargs)
# HM datasets are a bit weird: validation set (based off the train graph) has a few hundred new nodes, so we need a custom processing
def process(self):
train_files = self.raw_paths[:4]
train_res = self.load_file(train_files[0], inv_entity_vocab={}, inv_rel_vocab={})
inference_res = self.load_file(train_files[1], inv_entity_vocab={}, inv_rel_vocab={})
valid_res = self.load_file(
train_files[2],
inference_res["inv_entity_vocab"] if self.valid_on_inf else train_res["inv_entity_vocab"],
inference_res["inv_rel_vocab"] if self.valid_on_inf else train_res["inv_rel_vocab"]
)
test_res = self.load_file(train_files[3], inference_res["inv_entity_vocab"], inference_res["inv_rel_vocab"])
num_train_nodes, num_train_rels = train_res["num_node"], train_res["num_relation"]
inference_num_nodes, inference_num_rels = test_res["num_node"], test_res["num_relation"]
train_edges, inf_graph, inf_valid_edges, inf_test_edges = train_res["triplets"], inference_res["triplets"], valid_res["triplets"], test_res["triplets"]
train_target_edges = torch.tensor([[t[0], t[1]] for t in train_edges], dtype=torch.long).t()
train_target_etypes = torch.tensor([t[2] for t in train_edges])
train_fact_index = torch.cat([train_target_edges, train_target_edges.flip(0)], dim=1)
train_fact_type = torch.cat([train_target_etypes, train_target_etypes + num_train_rels])
inf_edges = torch.tensor([[t[0], t[1]] for t in inf_graph], dtype=torch.long).t()
inf_edges = torch.cat([inf_edges, inf_edges.flip(0)], dim=1)
inf_etypes = torch.tensor([t[2] for t in inf_graph])
inf_etypes = torch.cat([inf_etypes, inf_etypes + inference_num_rels])
inf_valid_edges = torch.tensor(inf_valid_edges, dtype=torch.long)
inf_test_edges = torch.tensor(inf_test_edges, dtype=torch.long)
train_data = Data(edge_index=train_fact_index, edge_type=train_fact_type, num_nodes=num_train_nodes,
target_edge_index=train_target_edges, target_edge_type=train_target_etypes, num_relations=num_train_rels*2)
valid_data = Data(edge_index=train_fact_index,
edge_type=train_fact_type,
num_nodes=valid_res["num_node"], # the only fix in this function
target_edge_index=inf_valid_edges[:, :2].T,
target_edge_type=inf_valid_edges[:, 2],
num_relations=inference_num_rels*2 if self.valid_on_inf else num_train_rels*2)
test_data = Data(edge_index=inf_edges, edge_type=inf_etypes, num_nodes=inference_num_nodes,
target_edge_index=inf_test_edges[:, :2].T, target_edge_type=inf_test_edges[:, 2], num_relations=inference_num_rels*2)
if self.pre_transform is not None:
train_data = self.pre_transform(train_data)
valid_data = self.pre_transform(valid_data)
test_data = self.pre_transform(test_data)
torch.save((self.collate([train_data, valid_data, test_data])), self.processed_paths[0])
class MTDEAInductive(InductiveDataset):
valid_on_inf = False
url = "https://reltrans.s3.us-east-2.amazonaws.com/MTDEA_data.zip"
base_name = "mtdea"
def __init__(self, root, version, **kwargs):
assert version in self.versions, f"unknown version {version} for {self.name}, available: {self.versions}"
super().__init__(root, version, **kwargs)
@property
def raw_dir(self):
return os.path.join(self.root, self.base_name, self.name, self.version, "raw")
@property
def processed_dir(self):
return os.path.join(self.root, self.base_name, self.name, self.version, "processed")
@property
def raw_file_names(self):
return [
"transductive_train.txt", "inference_graph.txt", "transductive_valid.txt", "inf_test.txt"
]
def download(self):
base_path = os.path.join(self.root, self.base_name)
download_path = download_url(self.url, base_path)
extract_zip(download_path, base_path)
# unzip all datasets at once
for dsname in ['FBNELL', 'Metafam', 'WikiTopics-MT1', 'WikiTopics-MT2', 'WikiTopics-MT3', 'WikiTopics-MT4']:
cl = globals()[dsname.replace("-","")]
versions = cl.versions
for version in versions:
for oldname, newname in zip(['train.txt', 'observe.txt', 'valid.txt', 'test.txt'], self.raw_file_names):
foldername = cl.prefix % version + "-trans" if "transductive" in newname else cl.prefix % version + "-ind"
os.renames(
os.path.join(base_path, "MTDEA_datasets", dsname, foldername, oldname),
os.path.join(base_path, dsname, version, "raw", newname)
)
shutil.rmtree(os.path.join(base_path, "MTDEA_datasets"))
def load_file(self, triplet_file, inv_entity_vocab={}, inv_rel_vocab={}, limit_vocab=False):
triplets = []
entity_cnt, rel_cnt = len(inv_entity_vocab), len(inv_rel_vocab)
# limit_vocab is for dropping triples with unseen head/tail not seen in the main entity_vocab
# can be used for FBNELL and MT3:art, other datasets seem to be ok and share num_nodes/num_relations in the train/inference graph
with open(triplet_file, "r", encoding="utf-8") as fin:
for l in fin:
u, r, v = l.split() if self.delimiter is None else l.strip().split(self.delimiter)
if u not in inv_entity_vocab:
if limit_vocab:
continue
inv_entity_vocab[u] = entity_cnt
entity_cnt += 1
if v not in inv_entity_vocab:
if limit_vocab:
continue
inv_entity_vocab[v] = entity_cnt
entity_cnt += 1
if r not in inv_rel_vocab:
if limit_vocab:
continue
inv_rel_vocab[r] = rel_cnt
rel_cnt += 1
u, r, v = inv_entity_vocab[u], inv_rel_vocab[r], inv_entity_vocab[v]
triplets.append((u, v, r))
return {
"triplets": triplets,
"num_node": entity_cnt,
"num_relation": rel_cnt,
"inv_entity_vocab": inv_entity_vocab,
"inv_rel_vocab": inv_rel_vocab
}
# special processes for MTDEA datasets for one particular fix in the validation set loading
def process(self):
train_files = self.raw_paths[:4]
train_res = self.load_file(train_files[0], inv_entity_vocab={}, inv_rel_vocab={})
inference_res = self.load_file(train_files[1], inv_entity_vocab={}, inv_rel_vocab={})
valid_res = self.load_file(
train_files[2],
inference_res["inv_entity_vocab"] if self.valid_on_inf else train_res["inv_entity_vocab"],
inference_res["inv_rel_vocab"] if self.valid_on_inf else train_res["inv_rel_vocab"],
limit_vocab=True, # the 1st fix in this function compared to the superclass processor
)
test_res = self.load_file(train_files[3], inference_res["inv_entity_vocab"], inference_res["inv_rel_vocab"])
num_train_nodes, num_train_rels = train_res["num_node"], train_res["num_relation"]
inference_num_nodes, inference_num_rels = test_res["num_node"], test_res["num_relation"]
train_edges, inf_graph, inf_valid_edges, inf_test_edges = train_res["triplets"], inference_res["triplets"], valid_res["triplets"], test_res["triplets"]
train_target_edges = torch.tensor([[t[0], t[1]] for t in train_edges], dtype=torch.long).t()
train_target_etypes = torch.tensor([t[2] for t in train_edges])
train_fact_index = torch.cat([train_target_edges, train_target_edges.flip(0)], dim=1)
train_fact_type = torch.cat([train_target_etypes, train_target_etypes + num_train_rels])
inf_edges = torch.tensor([[t[0], t[1]] for t in inf_graph], dtype=torch.long).t()
inf_edges = torch.cat([inf_edges, inf_edges.flip(0)], dim=1)
inf_etypes = torch.tensor([t[2] for t in inf_graph])
inf_etypes = torch.cat([inf_etypes, inf_etypes + inference_num_rels])
inf_valid_edges = torch.tensor(inf_valid_edges, dtype=torch.long)
inf_test_edges = torch.tensor(inf_test_edges, dtype=torch.long)
train_data = Data(edge_index=train_fact_index, edge_type=train_fact_type, num_nodes=num_train_nodes,
target_edge_index=train_target_edges, target_edge_type=train_target_etypes, num_relations=num_train_rels*2)
valid_data = Data(edge_index=train_fact_index,
edge_type=train_fact_type,
num_nodes=valid_res["num_node"], # the 2nd fix in this function
target_edge_index=inf_valid_edges[:, :2].T,
target_edge_type=inf_valid_edges[:, 2],
num_relations=inference_num_rels*2 if self.valid_on_inf else num_train_rels*2)
test_data = Data(edge_index=inf_edges, edge_type=inf_etypes, num_nodes=inference_num_nodes,
target_edge_index=inf_test_edges[:, :2].T, target_edge_type=inf_test_edges[:, 2], num_relations=inference_num_rels*2)
if self.pre_transform is not None:
train_data = self.pre_transform(train_data)
valid_data = self.pre_transform(valid_data)
test_data = self.pre_transform(test_data)
torch.save((self.collate([train_data, valid_data, test_data])), self.processed_paths[0])
class FBNELL(MTDEAInductive):
name = "FBNELL"
prefix = "%s"
versions = ["FBNELL_v1"]
def __init__(self, **kwargs):
kwargs.pop("version")
kwargs['version'] = self.versions[0]
super(FBNELL, self).__init__(**kwargs)
class Metafam(MTDEAInductive):
name = "Metafam"
prefix = "%s"
versions = ["Metafam"]
def __init__(self, **kwargs):
kwargs.pop("version")
kwargs['version'] = self.versions[0]
super(Metafam, self).__init__(**kwargs)
class WikiTopicsMT1(MTDEAInductive):
name = "WikiTopics-MT1"
prefix = "wikidata_%sv1"
versions = ['mt', 'health', 'tax']
def __init__(self, **kwargs):
assert kwargs['version'] in self.versions, f"unknown version {kwargs['version']}, available: {self.versions}"
super(WikiTopicsMT1, self).__init__(**kwargs)
class WikiTopicsMT2(MTDEAInductive):
name = "WikiTopics-MT2"
prefix = "wikidata_%sv1"
versions = ['mt2', 'org', 'sci']
def __init__(self, **kwargs):
super(WikiTopicsMT2, self).__init__(**kwargs)
class WikiTopicsMT3(MTDEAInductive):
name = "WikiTopics-MT3"
prefix = "wikidata_%sv2"
versions = ['mt3', 'art', 'infra']
def __init__(self, **kwargs):
super(WikiTopicsMT3, self).__init__(**kwargs)
class WikiTopicsMT4(MTDEAInductive):
name = "WikiTopics-MT4"
prefix = "wikidata_%sv2"
versions = ['mt4', 'sci', 'health']
def __init__(self, **kwargs):
super(WikiTopicsMT4, self).__init__(**kwargs)
# a joint dataset for pre-training ULTRA on several graphs
class JointDataset(InMemoryDataset):
datasets_map = {
'FB15k237': FB15k237,
'WN18RR': WN18RR,
'CoDExSmall': CoDExSmall,
'CoDExMedium': CoDExMedium,
'CoDExLarge': CoDExLarge,
'NELL995': NELL995,
'ConceptNet100k': ConceptNet100k,
'DBpedia100k': DBpedia100k,
'YAGO310': YAGO310,
'AristoV4': AristoV4,
}
def __init__(self, root, graphs, transform=None, pre_transform=None):
self.graphs = [self.datasets_map[ds](root=root) for ds in graphs]
self.num_graphs = len(graphs)
super().__init__(root, transform, pre_transform)
self.data = torch.load(self.processed_paths[0])
@property
def raw_dir(self):
return os.path.join(self.root, "joint", f'{self.num_graphs}g', "raw")
@property
def processed_dir(self):
return os.path.join(self.root, "joint", f'{self.num_graphs}g', "processed")
@property
def processed_file_names(self):
return "data.pt"
def process(self):
train_data = [g[0] for g in self.graphs]
valid_data = [g[1] for g in self.graphs]
test_data = [g[2] for g in self.graphs]
# filter_data = [
# Data(edge_index=g.data.target_edge_index, edge_type=g.data.target_edge_type, num_nodes=g[0].num_nodes) for g in self.graphs
# ]
torch.save((train_data, valid_data, test_data), self.processed_paths[0]) |