File size: 10,797 Bytes
b83dd51
 
 
 
 
897e33e
 
b83dd51
 
 
 
 
 
 
 
 
 
 
897e33e
b83dd51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_r50vd
tags:
- object-detection
- vision
- generated_from_trainer
model-index:
- name: suas-2025-rtdetr-finetuned-b8-lr3e-5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# suas-2025-rtdetr-finetuned-b8-lr3e-5

This model is a fine-tuned version of [PekingU/rtdetr_r50vd](https://huggingface.co/PekingU/rtdetr_r50vd) on the mfly-auton/suas-2025-synthetic-data dataset.
It achieves the following results on the evaluation set:
- Loss: 6.4174
- Map: 0.6051
- Map 50: 0.7291
- Map 75: 0.6597
- Map Small: 0.5252
- Map Medium: 0.6131
- Map Large: 0.6723
- Mar 1: 0.6006
- Mar 10: 0.7415
- Mar 100: 0.7959
- Mar Small: 0.5831
- Mar Medium: 0.8299
- Mar Large: 0.948
- Map Baseball-bat: 0.5841
- Mar 100 Baseball-bat: 0.7219
- Map Basketball: 0.4357
- Mar 100 Basketball: 0.4955
- Map Car: -1.0
- Mar 100 Car: -1.0
- Map Football: 0.4363
- Mar 100 Football: 0.5014
- Map Human: 0.9189
- Mar 100 Human: 0.9512
- Map Luggage: 0.5995
- Mar 100 Luggage: 0.8773
- Map Mattress: 0.7881
- Mar 100 Mattress: 0.9906
- Map Motorcycle: 0.9485
- Mar 100 Motorcycle: 0.9752
- Map Skis: 0.9582
- Mar 100 Skis: 0.9782
- Map Snowboard: 0.0257
- Mar 100 Snowboard: 0.777
- Map Soccer-ball: 0.6432
- Mar 100 Soccer-ball: 0.7154
- Map Stop-sign: 0.5994
- Mar 100 Stop-sign: 0.9274
- Map Tennis-racket: 0.0019
- Mar 100 Tennis-racket: 0.5736
- Map Umbrella: 0.8665
- Mar 100 Umbrella: 0.9243
- Map Volleyball: 0.6647
- Mar 100 Volleyball: 0.7338

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Baseball-bat | Mar 100 Baseball-bat | Map Basketball | Mar 100 Basketball | Map Car | Mar 100 Car | Map Football | Mar 100 Football | Map Human | Mar 100 Human | Map Luggage | Mar 100 Luggage | Map Mattress | Mar 100 Mattress | Map Motorcycle | Mar 100 Motorcycle | Map Skis | Mar 100 Skis | Map Snowboard | Mar 100 Snowboard | Map Soccer-ball | Mar 100 Soccer-ball | Map Stop-sign | Mar 100 Stop-sign | Map Tennis-racket | Mar 100 Tennis-racket | Map Umbrella | Mar 100 Umbrella | Map Volleyball | Mar 100 Volleyball |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:----------------:|:--------------------:|:--------------:|:------------------:|:-------:|:-----------:|:------------:|:----------------:|:---------:|:-------------:|:-----------:|:---------------:|:------------:|:----------------:|:--------------:|:------------------:|:--------:|:------------:|:-------------:|:-----------------:|:---------------:|:-------------------:|:-------------:|:-----------------:|:-----------------:|:---------------------:|:------------:|:----------------:|:--------------:|:------------------:|
| 17.7551       | 1.0   | 875  | 5.2510          | 0.6942 | 0.7838 | 0.7782 | 0.7254    | 0.6405     | 0.7363    | 0.7413 | 0.8942 | 0.9051  | 0.8089    | 0.8996     | 0.9496    | 0.6964           | 0.8173               | 0.7915         | 0.8415             | -1.0    | -1.0        | 0.7303       | 0.8192           | 0.8746    | 0.9281        | 0.6526      | 0.9372          | 0.9142       | 0.9711           | 0.8867         | 0.9311             | 0.8376   | 0.9594       | 0.3429        | 0.9742            | 0.7454          | 0.8686              | 0.581         | 0.9542            | 0.3918            | 0.944                 | 0.4713       | 0.8414           | 0.8027         | 0.8846             |
| 6.6319        | 2.0   | 1750 | 5.6671          | 0.6915 | 0.7796 | 0.7715 | 0.6499    | 0.6468     | 0.8104    | 0.7323 | 0.879  | 0.892   | 0.726     | 0.9168     | 0.9841    | 0.6895           | 0.7787               | 0.5032         | 0.6076             | -1.0    | -1.0        | 0.7195       | 0.7926           | 0.9186    | 0.9593        | 0.6184      | 0.9288          | 0.895        | 0.9984           | 0.901          | 0.9643             | 0.9222   | 0.9634       | 0.2897        | 0.9699            | 0.7717          | 0.8578              | 0.6219        | 0.9584            | 0.2013            | 0.8995                | 0.8724       | 0.9458           | 0.7562         | 0.864              |
| 6.3092        | 3.0   | 2625 | 5.3786          | 0.6861 | 0.7797 | 0.7703 | 0.6794    | 0.6505     | 0.8039    | 0.7008 | 0.8593 | 0.8895  | 0.738     | 0.9294     | 0.9851    | 0.7854           | 0.863                | 0.5392         | 0.5953             | -1.0    | -1.0        | 0.6451       | 0.7011           | 0.9165    | 0.9458        | 0.6485      | 0.9354          | 0.9011       | 0.9986           | 0.9194         | 0.9592             | 0.9354   | 0.9827       | 0.147         | 0.9815            | 0.8089          | 0.8686              | 0.7102        | 0.9732            | 0.0527            | 0.8694                | 0.8651       | 0.9418           | 0.7312         | 0.838              |
| 5.8652        | 4.0   | 3500 | 5.8538          | 0.6465 | 0.749  | 0.7306 | 0.6014    | 0.6486     | 0.6801    | 0.6644 | 0.8092 | 0.8383  | 0.6448    | 0.8784     | 0.9506    | 0.6314           | 0.7432               | 0.4033         | 0.446              | -1.0    | -1.0        | 0.6013       | 0.6536           | 0.9291    | 0.9609        | 0.729       | 0.9151          | 0.64         | 0.9942           | 0.9361         | 0.9592             | 0.8382   | 0.9396       | 0.1472        | 0.893             | 0.7465          | 0.8059              | 0.803         | 0.952             | 0.0352            | 0.7725                | 0.8569       | 0.892            | 0.7539         | 0.8091             |
| 5.4748        | 5.0   | 4375 | 5.8922          | 0.6416 | 0.7467 | 0.7203 | 0.5884    | 0.6359     | 0.7155    | 0.6543 | 0.8104 | 0.8498  | 0.6337    | 0.895      | 0.965     | 0.6726           | 0.7857               | 0.3624         | 0.4249             | -1.0    | -1.0        | 0.5819       | 0.641            | 0.9266    | 0.9518        | 0.6374      | 0.9073          | 0.7673       | 0.9959           | 0.9372         | 0.9692             | 0.9629   | 0.9861       | 0.0824        | 0.9316            | 0.7745          | 0.8198              | 0.7208        | 0.9508            | 0.015             | 0.8404                | 0.7927       | 0.8863           | 0.7489         | 0.8061             |
| 5.352         | 6.0   | 5250 | 6.3142          | 0.6409 | 0.741  | 0.7178 | 0.6313    | 0.5958     | 0.6861    | 0.6395 | 0.7987 | 0.8411  | 0.6741    | 0.8595     | 0.9544    | 0.7148           | 0.8051               | 0.4792         | 0.5386             | -1.0    | -1.0        | 0.5879       | 0.6392           | 0.9101    | 0.9478        | 0.5811      | 0.8811          | 0.8213       | 0.9987           | 0.9139         | 0.96               | 0.9479   | 0.9767       | 0.052         | 0.9105            | 0.7854          | 0.8321              | 0.6801        | 0.9332            | 0.0209            | 0.6995                | 0.7664       | 0.8798           | 0.7112         | 0.7733             |
| 5.1405        | 7.0   | 6125 | 6.3704          | 0.6464 | 0.7579 | 0.7185 | 0.5862    | 0.6209     | 0.6971    | 0.6346 | 0.7737 | 0.8247  | 0.6346    | 0.865      | 0.9372    | 0.6828           | 0.7855               | 0.5464         | 0.5882             | -1.0    | -1.0        | 0.5058       | 0.5697           | 0.9172    | 0.9526        | 0.6302      | 0.9021          | 0.8037       | 0.9908           | 0.9339         | 0.9643             | 0.9615   | 0.9767       | 0.0249        | 0.6942            | 0.7298          | 0.7859              | 0.7449        | 0.9567            | 0.0025            | 0.713                 | 0.8942       | 0.9397           | 0.6718         | 0.7272             |
| 4.9059        | 8.0   | 7000 | 6.4879          | 0.6238 | 0.7487 | 0.6799 | 0.5369    | 0.6248     | 0.6895    | 0.6205 | 0.7655 | 0.8153  | 0.5983    | 0.8634     | 0.9561    | 0.6155           | 0.7369               | 0.4736         | 0.5339             | -1.0    | -1.0        | 0.4614       | 0.5228           | 0.9159    | 0.9516        | 0.6436      | 0.8783          | 0.867        | 0.9951           | 0.9482         | 0.9714             | 0.9574   | 0.9767       | 0.0317        | 0.806             | 0.6742          | 0.7409              | 0.6387        | 0.9321            | 0.0037            | 0.7368                | 0.8625       | 0.9115           | 0.6398         | 0.7199             |
| 4.8446        | 9.0   | 7875 | 6.5165          | 0.6064 | 0.734  | 0.6583 | 0.5305    | 0.6055     | 0.6766    | 0.6057 | 0.7479 | 0.8021  | 0.5908    | 0.8441     | 0.9489    | 0.598            | 0.7249               | 0.4926         | 0.5547             | -1.0    | -1.0        | 0.4304       | 0.4976           | 0.9153    | 0.9478        | 0.5701      | 0.8526          | 0.7636       | 0.9867           | 0.9459         | 0.9684             | 0.9583   | 0.9762       | 0.0271        | 0.7862            | 0.6457          | 0.7131              | 0.6268        | 0.9338            | 0.0014            | 0.6518                | 0.8662       | 0.914            | 0.6484         | 0.7213             |
| 4.7656        | 10.0  | 8750 | 6.4174          | 0.6051 | 0.7291 | 0.6597 | 0.5252    | 0.6131     | 0.6723    | 0.6006 | 0.7415 | 0.7959  | 0.5831    | 0.8299     | 0.948     | 0.5841           | 0.7219               | 0.4357         | 0.4955             | -1.0    | -1.0        | 0.4363       | 0.5014           | 0.9189    | 0.9512        | 0.5995      | 0.8773          | 0.7881       | 0.9906           | 0.9485         | 0.9752             | 0.9582   | 0.9782       | 0.0257        | 0.777             | 0.6432          | 0.7154              | 0.5994        | 0.9274            | 0.0019            | 0.5736                | 0.8665       | 0.9243           | 0.6647         | 0.7338             |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0