|
--- |
|
base_model: dmis-lab/biobert-base-cased-v1.2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: devicebert-base-cased-v1.0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# devicebert-base-cased-v1.0 |
|
|
|
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Precision: 0.6816 |
|
- Recall: 0.6691 |
|
- F1: 0.6753 |
|
- Accuracy: 0.8547 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 101 | nan | 0.5981 | 0.5740 | 0.5858 | 0.8131 | |
|
| No log | 2.0 | 202 | nan | 0.6673 | 0.6197 | 0.6427 | 0.8424 | |
|
| No log | 3.0 | 303 | nan | 0.6926 | 0.6673 | 0.6797 | 0.8498 | |
|
| No log | 4.0 | 404 | nan | 0.686 | 0.6271 | 0.6552 | 0.8473 | |
|
| 0.3891 | 5.0 | 505 | nan | 0.6853 | 0.6490 | 0.6667 | 0.8539 | |
|
| 0.3891 | 6.0 | 606 | nan | 0.6857 | 0.7020 | 0.6938 | 0.8563 | |
|
| 0.3891 | 7.0 | 707 | nan | 0.6900 | 0.6673 | 0.6784 | 0.8580 | |
|
| 0.3891 | 8.0 | 808 | nan | 0.6795 | 0.6782 | 0.6789 | 0.8514 | |
|
| 0.3891 | 9.0 | 909 | nan | 0.6906 | 0.6691 | 0.6797 | 0.8571 | |
|
| 0.1315 | 10.0 | 1010 | nan | 0.6816 | 0.6691 | 0.6753 | 0.8547 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|